首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Variable Reaction Behaviour of Base‐free Tris(trimethylsilyl)methyl Lithium with Trihalogenides of Earth‐Metals and Iron Base‐free tris(trimethylsilyl)methyl Lithium, Tsi–Li, reacts with the earth‐metal trihalogenides (MHal3 with M = Al, Ga, In and Hal = Cl, Br, I) primarily to give the metallates [Tsi–MHal3]Li. Simultaneous to this simple metathesis a methylation also takes place, mainly with heavier halogenides of Ga and In with excess Tsi–Li, forming the mono and dimethyl compounds Tsi–M(Me)Hal (M = Ga, In; Hal = I), Tsi–MMe2 (M = Ga), and the bis(trisyl)derivative (Tsi)2InMe, respectively and the main by‐product 1,3‐disilacyclobutane. Representatives of each type of compound have been isolated by fractionating crystallizations or sublimations and characterized by spectroscopic methods (1H, 13C, 29Si NMR, IR, Raman) and X‐ray elucidations. Reduction takes place, when FeCl3 reacts with Tsi–Li (1 : 3 ratio) in toluene at 55–60 °C, yielding red‐violet Fe(Tsi)2, 1,1,1‐tris(trimethylsilyl)‐2‐phenyl ethane and low amounts of Tsi–Cl. Fe(Tsi)2 is monomeric, crystallizes in the monoclinic space group C2/c and consists of a linear C–Fe–C skeleton with d(Fe–C) of 204,5(4) pm.  相似文献   

2.
Reactions of some Methylmetal Halides of Aluminium, Gallium, and Indium with Hexamethyldisilazane MeAlCl2 or MeGaBr2, and bis(trimethylsilyl)amine form the dimeric, mixed-substituted ring molecules (Me(Hal)MIII–N(H)SiMe3)2 and one equivalent Me3SiHal. The NMR (1H, 13C, 29Si) and vibrational spectra (IR, Raman) are measured and the X-ray structure analysis of the compound with MIII = Al and Hal = Cl, has been done as well. Me2AlCl with an excess of HN(SiMe3)2 forms the expected amide (Me2Al–N(H)SiMe3)2, the homologue Me2GaCl with HMDS, however, gives at 50–55 °C only the cyclic (1 : 1) adduct (Me2Ga–N(H)SiMe3) · (Me2GaCl). This complex crystallizes in the space group Cmc21, the unit cell consists of four binucleate molecules with folded Ga–N–Ga–Cl-ring skeletons.  相似文献   

3.
Dimethyl Earth‐Metal Heterocycles – Derivatives of Trimethyl‐silylated, ‐germylated, and ‐stannylated Phosphanes and Arsanes – Syntheses, Spectra, and Structures The organo earth‐metal heterocycles [Me2MIII–E(MIVMe3)2]n with MIII = Al, Ga, In; E = P, As; MIV = Si, Ge, Sn and n = 2, 3 (Me = CH3) have been prepared from the dimethyl metal compounds Me2MIIIX (X = Me, H, Cl, OMe, OPh) and the pnicogen derivatives HnE(MIVMe3)3–n (n = 0, 1) according to known preparation methods. The mass, 1H, 13C, 31P, 29Si, 119Sn nmr, as well as the ir and Raman spectra have been discussed comparatively; selected representatives are characterized by X‐ray structure analyses. The dimeric species with four‐membered (E–MIII)2 rings are isotypic and crystallize in the triclinic space group P1, the trimer [Me2In–P(SnMe3)2]3 with a strongly puckered (In–P)3‐ring skeleton crystallizes with two formula units per cell in the same centrosymmetric triclinic space group.  相似文献   

4.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

5.
The Crystal Structure of Diethylaluminium Hypersilanide [(C2H5)2Al–Si{Si(CH3)3}3]2 [Et2Al–Hsi]2 (Et = C2H5, Hsi = –Si(SiMe3)3), prepared from [Et2AlCl]2 and equimolar amounts of base‐free Li–Hsi in n‐pentane, crystallizes in the triclinic space group P 1 with two independent dimers per unit cell. One of these molecules is disordered. The dimers consist of planar Al2C2‐skeletons with Al–C–Al bridging bonds of 212,9(2) and 221,2(2) pm, respectively, and with intramolecular C–H…Al contacts of 202(2) pm.  相似文献   

6.
《Polyhedron》1999,18(26):3567-3571
The aluminum and gallium dimethyl complexes, [BpBut,Me]AlMe2 and [BpBut,Me]GaMe2, are readily obtained by the reactions of [BpBut,Me]Tl with Me3Al and Me3Ga, respectively. [BpBut,Me]AlMe2 and [BpBut,Me]GaMe2 have been structurally characterized by X-ray diffraction, which indicates that the most noticeable difference in these otherwise very similar structures is the C–M–C bond angle, which increases from 118.9(3)° for [BpBut,Me]AlMe2 to 124.0(2)° for [BpBut,Me]GaMe2.  相似文献   

7.
Preparation, Properties, and Molecular Structures of Dimethylaminomethyl Ferrocenyl Compounds of selected Elements of Group 13 and 14 Dimethylmetalchlorides of gallium and indium react with dimethylaminomethylferrocenyllithium (FcNLi) to give the corresponding dimethylmetaldimethylaminomethylferrocenes 1 and 2 [Me2MFcN; M=Ga, In]. In a similar manner dialkylmetaldichlorides of germanium and tin yield the expected chlordialkylmetaldimethylaminomethylferrocenes 3 – 5 [R2(Cl)MFcN; M=Ge; R = Me ( 3 ), M=Sn; R=Me ( 4 ), Ph ( 5 )]. In a reaction of Me3Al and Me2AlCl with dimethylaminomethylferrocene the formation of the 1 : 1 adducts 7 and 8 could be observed. All compounds were characterised by 1H and 13C nmr spectroscopy. The molecular structures of 1 , 3 , 4 and 7 were determined. 3 and 4 build in contrast to 1 monomeric molecules with chelat rings as a result of the M–N coordination. Compound 7 consist of monomeric molecules with 4 coordinated Al atoms.  相似文献   

8.
The title compound has been prepared in good yield by the reaction of gallium trichloride with base‐free hypersilyl lithium (Li–Si(SiMe3)3, Me = CH3) in a 1 : 3 molar ratio. Ga(Si(SiMe3)3)3 is monomeric in solution and in the solid state. The compound has been characterized with NMR, IR and Raman techniques as well as by an X‐ray structure determination (planar GaSi3‐skeleton, monoclinic space group P21/c, Z = 4, d(Ga–Si) = 249,8 ± 0,2 pm).  相似文献   

9.
Selective formation of 1,3,3,4,6,6‐hexamethyl‐1,4‐diaza‐3,6‐diinda‐norborane was achieved by the reaction of bis(lithiomethyl‐methylamino)methane with dimethylindium chloride by simultaneous formation of two dative metal‐carbon and two metal‐nitrogen bonds accompanied by two ring closures. The synthesis of heterometallic compounds of this type, namely 1,3,3,4,6,6‐hexamethyl‐3‐alumina‐1,4‐diaza‐6‐galla‐norborane [Me2AlCH2N(Me)]CH2[N(Me)CH2GaMe2], was also attempted by the reaction of bis(lithiomethyl‐methylamino)methane with dimethylaluminium and ‐gallium chloride. This compound is formed, but cannot be separated from the simultaneously formed homometallic compounds [Me2MCH2N(Me)]2CH2(M = Al, Ga). The compounds were identified by elemental analyses, mass spectra, NMR spectroscopy (1H, 13C), and by determination of their crystal structures in which they are present as monomers. The norbornane‐like structure is favoured over potential isomers containing three‐membered rings and over polymeric aggregation in both compounds. In addition, the crystal structure of dimethyl(dimethylaminomethyl)indium was determined by single crystal X‐ray diffraction, which shows an intermolecular aggregation into a six‐membered ring dimer.  相似文献   

10.
Halide Ions as Catalyst: Metalcentered C–C Bond Formation Proceeded from Acetonitril AlMe3 reacts at 20 ?C in acetonitrile to the complex [Me3Al(NCMe)] ( 1 ). By addition of cesium halides (X = F, Cl, Br) a trimerisation to the heterocycle [Me2Al{HNC(Me)}2C(CN)] ( 2 ) has been observed. The reaction might be carried out under catalytic conditions (1–2 mol% CsX). The gallium complex [Me2Ga{HNC(Me)}2 · C(CN)] ( 3 ), generated under similar reaction conditions, can be converted to the silylated compound [Me2Ga{Me3SiNC(Me)}2C(CN)] ( 4 ) by successive treatment with two equivalents n‐butyllithium and Me3SiCl. 3 reacts under hydrolysis conditions (1 M hydrochloric acid) to the iminium salt [{H2NC(Me)}2C(CN)]Cl ( 5 ). A mixture of H2O, Ph2PCl and 3 in THF/toluene leads in a unusual conversion to the diphospane derivative [Ph2P–P(O)(Me2GaCl)] ( 6 ). 1 , 2 , 4 , 5 and 6 have been characterized by NMR, IR and MS techniques. X‐ray structure analyses were performed with 1 , 2 , 4 and 6 · 0.5 toluene. According this 1 possesses an almost linear axis AlNCC [Al1–N1–C3: 179,5(2)?; N1–C3–C4: 179,7(4)?]. 2 is an AlN2C3 six‐membered heterocycle with two iminium fuctions. One N–H group is responsible for a intermolecular chain‐formation through hydrogen bridges to an adjacent nitrile group along the direction [010]. The basic structural motif of the heterocycle 3 has been maintained after silylation to 4 . In 6 · 0.5 toluene an unit Me2GaCl, originated from 3 , is coordinated to the oxygen atom of the diphosphane oxide Ph2P–P(O)Ph2.  相似文献   

11.
The facile one‐pot reaction of the stable N‐heterocyclic silylene LSi: 1 (L?(ArN)C(?CH2) CH?C(Me)(NAr), Ar=2,6‐iPr2C6H3) with Me2Zn, Me3Al, H3Al‐NMe3, and MeLi has been investigated. The silicon(II) atom in 1 is capable of insertion into the corresponding M? C and Al? H bonds under very mild reaction conditions. Thus, Me2Zn furnishes the bis(silyl) zinc complex LSi(Me)ZnSi(Me)L 2 as the sole product, irrespective of the molar ratio of the starting materials applied. Moreover, the reactions of 1 with Me3Al, H3Al‐NMe3, and MeLi lead directly to the 1,1‐addition products LSi(Me)(Al(thf)Me2) 3 , LSi(H)(AlH2(NMe3)) 4 , and LSi(Me)Li(thf)3 5 , respectively. All new compounds 2 – 5 were fully characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single‐crystal X‐ray diffraction analyses.  相似文献   

12.
Synthesis, NMR Spectra and Structure of [(CH3)2Ga{μ‐P(H)Si(CH3)3}2Ga(CH3)2{μ‐P(Si(CH3)3)2}Ga(CH3)2] The title compound has been prepared in good yield by the reaction of [Me2GaOMe]3 (Me = CH3) with HP(SiMe3)2 in toluene (ratio 1 : 1,1) and purified by crystallization from pentane or toluene, respectively. This organogallium compound forms (Ga–P)3 ring skeletons with one Ga–P(SiMe3)2–Ga and two Ga–P(H)SiMe3–Ga bridges and crystallizes in the monoclinic space group C2/c. The known homologous Al‐compound is isotypic, both (MIII–P)3 heterocycles have twist‐conformations, the ligands of the monophosphane bridges have trans arrangements.  相似文献   

13.
Synthesis and Structure of C,N‐difunctionalized Sulfinimideamides Sulfurdiimides RN=S=NR ( 1 a , b ) react in diethyl ether with two equivalents of lithiummethyl to give dimeric C,N‐dilithiummethylenesulfinimideamide ether adducts {Li2[H2C–S(NR)2 · Et2O]}2 ( 2 a , b ) ( a : R = tBu, b : R = SiMe3). Metathesis of 2 b with four equivalents of Me3SiCl, Me3SnCl or Ph3SnCl yields the corresponding C,N‐bis‐substituted sulfinimideamides R3EH2C–S[N(SiMe3)2]NER3 ( 3 – 5 ) ( 3 : R = Me, E = Sn; 4 : R = Ph, E = Sn; 5 : R = Me, E = Si). The crystal structures of 2 a and 2 b were determined by X‐ray structure analysis. Both compounds form centrosymmetric cage structures consisting of two distorted face sharing cubes ( 2 a : space group P1 (No. 2); Z = 2 (4 · 0,5); 2 b : space group C2/c (No. 15), Z = 4).  相似文献   

14.
Treatment of the thioether‐substituted secondary phosphanes R2PH(C6H4‐2‐SR1) [R2=(Me3Si)2CH, R1=Me ( 1PH ), iPr ( 2PH ), Ph ( 3PH ); R2=tBu, R1=Me ( 4PH ); R2=Ph, R1=Me ( 5PH )] with nBuLi yields the corresponding lithium phosphanides, which were isolated as their THF ( 1 – 5Pa ) and tmeda ( 1 – 5Pb ) adducts. Solid‐state structures were obtained for the adducts [R2P(C6H4‐2‐SR1)]Li(L)n [R2=(Me3Si)2CH, R1=nPr, (L)n=tmeda ( 2Pb ); R2=(Me3Si)2CH, R1=Ph, (L)n=tmeda ( 3Pb ); R2=Ph, R1=Me, (L)n=(THF)1.33 ( 5Pa ); R2=Ph, R1=Me, (L)n=([12]crown‐4)2 ( 5Pc )]. Treatment of 1PH with either PhCH2Na or PhCH2K yields the heavier alkali metal complexes [{(Me3Si)2CH}P(C6H4‐2‐SMe)]M(THF)n [M=Na ( 1Pd ), K ( 1Pe )]. With the exception of 2Pa and 2Pb , photolysis of these complexes with white light proceeds rapidly to give the thiolate species [R2P(R1)(C6H4‐2‐S)]M(L)n [M=Li, L=THF ( 1Sa , 3Sa – 5Sa ); M=Li, L=tmeda ( 1Sb , 3Sb – 5Sb ); M=Na, L=THF ( 1Sd ); M=K, L=THF ( 1Se )] as the sole products. The compounds 3Sa and 4Sa may be desolvated to give the cyclic oligomers [[{(Me3Si)2CH}P(Ph)(C6H4‐2‐S)]Li]6 (( 3S )6) and [[tBuP(Me)(C6H4‐2‐S)]Li]8 (( 4S )8), respectively. A mechanistic study reveals that the phosphanide–thiolate rearrangement proceeds by intramolecular nucleophilic attack of the phosphanide center at the carbon atom of the substituent at sulfur. For 2Pa / 2Pb , competing intramolecular β‐deprotonation of the n‐propyl substituent results in the elimination of propene and the formation of the phosphanide–thiolate dianion [{(Me3Si)2CH}P(C6H4‐2‐S)]2?.  相似文献   

15.
Investigations on the Reactivity of [Me2AlP(SiMe3)2]2 with Base‐stabilized Organogalliumhalides and ‐hydrides [Me2AlP(SiMe3)2]2 ( 1 ) reacts with dmap?Ga(Cl)Me2, dmap?Ga(Me)Cl2, dmap?GaCl3 and dmap?Ga(H)Me2 with Al‐P bond cleavage and subsequent formation of heterocyclic [Me2GaP(SiMe3)2]2 ( 2 ) as well as dmap?AlMexCl3?x (x = 3 8 ; 2 3 ; 1 4 ; 0 5 ). The reaction between equimolar amounts of dmap?Al(Me2)P(SiMe3)2 and dmap?Ga(t‐Bu2)Cl yield dmap?Ga(t‐Bu2)P(SiMe3)2 ( 6 ) and dmap?AlMe2Cl ( 3 ). 2 – 8 were characterized by NMR spectroscopy, 2 and 6 also by single crystal X‐ray diffraction.  相似文献   

16.
Synthesis and X‐Ray Structure Determination of iso ‐Butylimido Galliummethyl, [CH3Ga–NCH2CH(CH3)2]6 The thermal decomposition of [Me2Ga–N(iBu)SnMe3]2 (prepared by the reaction of [Me2SnNiBu]3 with GaMe3 in a 1:3 molar ratio) in an evacuated, sealed tube at 160°C forms [MeGaNiBu]6 in high yield and SnMe4. Mass, 1H and 13C NMR as well as some IR and Raman spectroscopic data are given and the crystal structure of this cage molecule with a hexagonal prismatic Ga6N6 skeleton has been determined.  相似文献   

17.
The reduction of digallane [(dpp‐bian)Ga? Ga(dpp‐bian)] ( 1 ) (dpp‐bian=1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene) with lithium and sodium in diethyl ether, or with potassium in THF affords compounds featuring the direct alkali metal–gallium bonds, [(dpp‐bian)Ga? Li(Et2O)3] ( 2 ), [(dpp‐bian)Ga? Na(Et2O)3] ( 3 ), and [(dpp‐bian)Ga? K(thf)5] ( 7 ), respectively. Crystallization of 3 from DME produces compound [(dpp‐bian)Ga? Na(dme)2] ( 4 ). Dissolution of 3 in THF and subsequent crystallization from diethyl ether gives [(dpp‐bian)Ga? Na(thf)3(Et2O)] ( 5 ). Ionic [(dpp‐bian)Ga]?[Na([18]crown‐6)(thf)2]+ ( 6 a ) and [(dpp‐bian)Ga]?[Na(Ph3PO)3(thf)]+ ( 6 b ) were obtained from THF after treatment of 3 with [18]crown‐6 and Ph3PO, respectively. The reduction of 1 with Group 2 metals in THF affords [(dpp‐bian)Ga]2M(thf)n (M=Mg ( 8 ), n=3; M=Ca ( 9 ), Sr ( 10 ), n=4; M=Ba ( 11 ), n=5). The molecular structures of 4 – 7 and 11 have been determined by X‐ray crystallography. The Ga? Na bond lengths in 3 – 5 vary notably depending on the coordination environment of the sodium atom.  相似文献   

18.
Dimethylgallium-bis(trimethylsilyl)phosphane, Vibrational Spectrum, Force Constants, and X-Ray Structure Dimeric dimethylgallium-bis(trimethylsilyl)phosphane, [Me2Ga? P(SiMe3)2]2, (Me = CH3) is synthesized from Me2GaCl and P(SiMe3)3 in hot toluene. The compound crystallizes in the triclinic space group P1 with the cell parameters a = 909.8(2), b = 960.5(2), c = 971.6(2) pm; α = 76.75(1)°, β = 80.35(1)°, γ = 63.94(1)° and Z = 1 (dimer). The Ga? P distances are 244.8 and 245.2 pm, the ring angles are 91.8° (Ga? P? Ga) and 88.2° (P? Ga? P), respectively. The vibrational spectrum (IR and Raman for the solid) has been measured and assigned; force constants calculations are carried out for the skeleton [C2Ga? P(SiC3)2]2 using Fleischhauers [26] PC-program.  相似文献   

19.
Treatment of pyridine‐stabilized silylene complexes [(η5‐C5Me4R)(CO)2(H)W?SiH(py)(Tsi)] (R=Me, Et; py=pyridine; Tsi=C(SiMe3)3) with an N‐heterocyclic carbene MeIiPr (1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) caused deprotonation to afford anionic silylene complexes [(η5‐C5Me4R)(CO)2W?SiH(Tsi)][HMeIiPr] (R=Me ( 1‐Me ); R=Et ( 1‐Et )). Subsequent oxidation of 1‐Me and 1‐Et with pyridine‐N‐oxide (1 equiv) gave anionic η2‐silaaldehydetungsten complexes [(η5‐C5Me4R)(CO)2W{η2‐O?SiH(Tsi)}][HMeIiPr] (R=Me ( 2‐Me ); R=Et ( 2‐Et )). The formation of an unprecedented W‐Si‐O three‐membered ring was confirmed by X‐ray crystal structure analysis.  相似文献   

20.
[Ga6R8]2– (R = SiPh2Me): A Metalloid Cluster Compound with an Unexpected Ga6‐Frame The reaction of a metastable solution of GaBr with a solution of LiSiPh2Me in a toluene/THF mixture results in orange coloured crystals of [Ga6(SiPh2Me)8]2– · 2 [Li(THF)4]+ ( 1 ). The unexpected structure of the planar Ga6 frame (C2h) could also be realized with the help of DFT calculation. DFT calculations furthermore show that 1 is energetically favoured against an octahedral Ga6R62– species and R2. In contrast calculations for the similar Al and B species show that in these cases the octahedral entities are favoured. These results demonstrate that even for similar compounds of B, Al, and Ga Wade rules are too general and that they cannot predict the correct structure. Moreover the atomic arrangement within 1 shows that a structure is preferred which is also present in allotropic β‐Ga and that therefore clusters of this type should be called metalloid or more general elementoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号