首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sesquialkoxides of Gallium and Indium Treatment of GaMe3 with one equivalent of HOcHex in toluene at 20 °C leads to [Me2GaOcHex]2 ( 4 ) under evolution of methane. The reaction of InMe3 with two equivalents of HOcHex leads under similar conditions not to [MeIn(OcHex)2]n but to the sesquialkoxide [In{Me2In(OcHex)2}3] ( 5 ). 5 can be described also as [{Me2InOcHex)}2{MeIn(OcHex)2}2]. The use of an excess of cyclohexanol in boiling toluene gives the same result. Under these reflux conditions, the reaction of GaMe3 with an excess of PhCH2OH leads exclusively to another type of sequialkoxides, [Ga{MeGa(OCH2Ph)3}3] ( 6 ). 4 — 6 were characterized by NMR, vibrational and MS spectra, as well as by X‐ray structure determinations. According to this, 4 forms centrosymmetrical and therefore planar Ga2O2 four‐membered rings. 5 and 6 possess basically the same structural motif, central M3+ ion ( 5 : In3+; 6 : Ga3+) coordinated by three metalate units ( 5 : [Me2In(OcHex)2]; 6 : [MeGa(OCH2Ph)3]). The central M3+ ions have always coordination number (CN) six while the three surrounding metal ions possess CN 4. Because of the spectroscopic findings 6 must exist in two isomers (1:1). The C3‐symmetrical isomer C3‐ 6 was characterized by X‐ray analysis, while the isomer C1‐ 6 could by described mainly by the complex NMR data.  相似文献   

2.
3.
Selective formation of 1,3,3,4,6,6‐hexamethyl‐1,4‐diaza‐3,6‐diinda‐norborane was achieved by the reaction of bis(lithiomethyl‐methylamino)methane with dimethylindium chloride by simultaneous formation of two dative metal‐carbon and two metal‐nitrogen bonds accompanied by two ring closures. The synthesis of heterometallic compounds of this type, namely 1,3,3,4,6,6‐hexamethyl‐3‐alumina‐1,4‐diaza‐6‐galla‐norborane [Me2AlCH2N(Me)]CH2[N(Me)CH2GaMe2], was also attempted by the reaction of bis(lithiomethyl‐methylamino)methane with dimethylaluminium and ‐gallium chloride. This compound is formed, but cannot be separated from the simultaneously formed homometallic compounds [Me2MCH2N(Me)]2CH2(M = Al, Ga). The compounds were identified by elemental analyses, mass spectra, NMR spectroscopy (1H, 13C), and by determination of their crystal structures in which they are present as monomers. The norbornane‐like structure is favoured over potential isomers containing three‐membered rings and over polymeric aggregation in both compounds. In addition, the crystal structure of dimethyl(dimethylaminomethyl)indium was determined by single crystal X‐ray diffraction, which shows an intermolecular aggregation into a six‐membered ring dimer.  相似文献   

4.
Amido Derivatives of Aluminium and Gallium The treatment of GaCl3 with LiNcHex2 (cHex = C6H11) in the molar ratio 1 : 3 or 1 : 4 in THF at 20 °C gives the gallium amide Ga(NcHex2)3 ( 1 ) which is monomer in solution and the solid state. Under similar conditions the reaction of AlCl3 and GaCl3 with LiN(CH2Ph)2 in the molar ration of 1 : 4 leads to the amido metalates [Li(THF)4][M{N(CH2Ph)2}4] (M = Al ( 2 ), Ga ( 3 )). 1 – 3 have been characterized by NMR, IR and MS techniques as well as by X‐Ray analyses. According to them 2 and 3 consist of separate ions [Li(THF)4]+ and [M{N(CH2Ph)3}4]. The reason for the monomeric character of 1 is the sterical demand of the NcHex2 group.  相似文献   

5.
The Variable Reaction Behaviour of Base‐free Tris(trimethylsilyl)methyl Lithium with Trihalogenides of Earth‐Metals and Iron Base‐free tris(trimethylsilyl)methyl Lithium, Tsi–Li, reacts with the earth‐metal trihalogenides (MHal3 with M = Al, Ga, In and Hal = Cl, Br, I) primarily to give the metallates [Tsi–MHal3]Li. Simultaneous to this simple metathesis a methylation also takes place, mainly with heavier halogenides of Ga and In with excess Tsi–Li, forming the mono and dimethyl compounds Tsi–M(Me)Hal (M = Ga, In; Hal = I), Tsi–MMe2 (M = Ga), and the bis(trisyl)derivative (Tsi)2InMe, respectively and the main by‐product 1,3‐disilacyclobutane. Representatives of each type of compound have been isolated by fractionating crystallizations or sublimations and characterized by spectroscopic methods (1H, 13C, 29Si NMR, IR, Raman) and X‐ray elucidations. Reduction takes place, when FeCl3 reacts with Tsi–Li (1 : 3 ratio) in toluene at 55–60 °C, yielding red‐violet Fe(Tsi)2, 1,1,1‐tris(trimethylsilyl)‐2‐phenyl ethane and low amounts of Tsi–Cl. Fe(Tsi)2 is monomeric, crystallizes in the monoclinic space group C2/c and consists of a linear C–Fe–C skeleton with d(Fe–C) of 204,5(4) pm.  相似文献   

6.
Diorganomorpholinometalates of Gallium and Indium – Monomer‐Dimer‐Equilibrium in Solution The reaction of Li[N(CH2CH2)2O] (LiMorpholinate; Li(Morph)) with Me2GaCl and Me2InCl gives by salt‐elimination the diorganoamidometalates Me2M(Morph) ( M = Ga: 1 ; M = In: 2 ), respectively. 1 and 2 were characterized by NMR and vibrational spectroscopy as well as by X‐ray structure determinations. According to this, centrosymmetrical dimers are present in the solid state while a monomer‐dimer equilibrium was assumed for the THF‐solution. Cryoscopic molecular weight determinations confirmed our assumptions.  相似文献   

7.
The reaction of InCl3 with LiAstBu2 in THF at –78 °C gives the indium arsenide Cl2InAstBu2 ( 1 ), which is dimer in solution and solid state. The corresponding reaction of InCl3 with Li2AstBu leads to the metalate [Li(THF)4]2[(InCl)4(InCl2)2(AstBu)6] ( 2 ). The arsanido metalate [Li(THF)4]2[(GaCl2)6(AstBu)4] · THF ( 3 · THF) could be obtained by treatment of GaCl3 with Li2AstBu in the molar ratio 6 : 4. A comparable reaction with TlCl3 and LiAsR2 or LiPR2, respectively, was not successful because of the oxidation potential of TlCl3. The reaction mixture of TlCl3 and LiPPh2 for example gives TlCl and Ph2P–PPh2 ( 4 ) as redox products. The octaarsane [As(AstBu)3]2 ( 5 ) can be obtained by the treatment of tBuAs(SiMe3)2 with TlCl3 in THF. 1–5 were characterized by NMR, IR and MS techniques. The X‐ray analyses of 2 and 3 · THF show that 2 can be derived from the wurtzite structure while the zinc blende structure is the model for 3 with a adamantane‐like dianion [(GaCl2)6(AstBu)4]2–.  相似文献   

8.
Dimethyl Earth‐Metal Heterocycles – Derivatives of Trimethyl‐silylated, ‐germylated, and ‐stannylated Phosphanes and Arsanes – Syntheses, Spectra, and Structures The organo earth‐metal heterocycles [Me2MIII–E(MIVMe3)2]n with MIII = Al, Ga, In; E = P, As; MIV = Si, Ge, Sn and n = 2, 3 (Me = CH3) have been prepared from the dimethyl metal compounds Me2MIIIX (X = Me, H, Cl, OMe, OPh) and the pnicogen derivatives HnE(MIVMe3)3–n (n = 0, 1) according to known preparation methods. The mass, 1H, 13C, 31P, 29Si, 119Sn nmr, as well as the ir and Raman spectra have been discussed comparatively; selected representatives are characterized by X‐ray structure analyses. The dimeric species with four‐membered (E–MIII)2 rings are isotypic and crystallize in the triclinic space group P1, the trimer [Me2In–P(SnMe3)2]3 with a strongly puckered (In–P)3‐ring skeleton crystallizes with two formula units per cell in the same centrosymmetric triclinic space group.  相似文献   

9.
Arene complexes of main-group metals were, until recently, rare species—in contrast to the now classical, analogous complexes of transition metals. In systematic investigations, it has been possible to prepare and structurally characterize arene complexes of the univalent elements gallium, indium, and thallium, which directly follow the d-block elements in the periodic table. This new type of compound is characterized by centric (η6) coordination of the metal to the arene; both mono- and bis(arene) complexes are known. The interaction can be explained by the perfect agreement between the HOMO/LUMO symmetry of the arene and of the low-valent metal. The electronic states of the nd10(n + 1)s2 configuration, which are partially modified by relativistic effects, play a particularly important role. The relationship to the few known complexes of the neighboring elements (SnII, PbII) becomes plausible via the isoelectronic principle. The arene/GaI, InI, TlI systems are of potential significance as homogeneous reducing agents and as agents for the activation of aromatic compounds, the purification of metals, and the separation of metals from nonaqueous media.  相似文献   

10.
11.
Synthesis and Characterization of New Intramolecularly Nitrogen‐stabilized Organoaluminium‐ and Organogallium Alkoxides The intramolecularly nitrogen stabilized organoaluminium alkoxides [Me2Al{μ‐O(CH2)3NMe2}]2 ( 1a ), Me2AlOC6H2(CH2NMe2)3‐2,4,6 ( 2a ), [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]2 ( 3a ) and [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NHCH2Ph}]2 ( 4 ) are formed by reacting equimolar amounts of AlMe3 and Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, (S)‐i‐PrNHCH(i‐Pr)CH2OH, or (S)‐PhCH2NHCH(i‐Pr)CH2OH, respectively. An excess of AlMe3 reacts with Me2N(CH2)2OH, Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, and (S)‐i‐PrNHCH(i‐Pr)CH2OH producing the “pick‐a‐back” complexes [Me2AlO(CH2)2NMe2](AlMe3) ( 5 ), [Me2AlO(CH2)3NMe2](AlMe3) ( 1b ), [Me2AlOC6H2(CH2NMe2)3‐2,4,6](AlMe3)2 ( 2b ), and [(S)‐Me2AlOCH2CH(i‐Pr)NH‐i‐Pr](AlMe3) ( 3b ), respectively. The mixed alkyl‐ or alkenylchloroaluminium alkoxides [Me(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 6 ) and [{CH2=C(CH3)}(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 8 ) are to obtain from Me2AlCl and Me2N(CH2)2OH and from [Cl2Al{μ‐O(CH2)2NMe2}]2 ( 7 ) and CH2=C(CH3)MgBr, respectively. The analogous dimethylgallium alkoxides [Me2Ga{μ‐O(CH2)3NMe2}]2 ( 9 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]n ( 10 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NHCH2Ph}]n ( 11 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)N(Me)CH2Ph}]n ( 12 ) and [(S)‐Me2Ga{μ‐OCH2(C4H7NHCH2Ph)}]n ( 13 ) result from the equimolar reactions of GaMe3 with the corresponding alcohols. The new compounds were characterized by elemental analyses, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and mass spectrometry. Additionally, the structures of 1a , 1b , 2a , 2b , 3a , 5 , 6 and 8 were determined by single crystal X‐ray diffraction.  相似文献   

12.
Monomeric Dialkyl Metal Complexes of the R2M(NR′)2XR Type with M = Al, Ga, In, Tl; X = S, C and R, R′ = Alkyl and Silyl N,N′-Bis(trimethylsilyl)sulfurdiimide reacts with the trimethyl derivatives of aluminium, gallium, and indium within insertion. Hereby monomeric sulfinic acid imidamidates Me2M(NSiMe3)2SMe (Me = CH3) are formed. The lithium amidinates Li(NR′)2CMe (R′ = i-C3H7 and SiMe3) are formed likewise by insertion reactions with LiMe and the corresponding carbodiimides R′N?C?NR′ and were used in reactions with R2MCl (M = Al to Tl) to synthesize dialkyl metal amidinates R2M(NR′)2CMe. The NMR (1H and 13C) and the vibrational spectra (IR and Raman) are discussed and applied to describe the structure of these chelat complexes.  相似文献   

13.
The reaction of ECl3 (E = Al, Ga) with two equivalentsof Li2Me2Si(NPh)2 (in diethyl ether/n‐hexane) leads to the formation of bis‐chelate complexes [Li(OEt2)3][E{Me2Si(NPh)2}2] (E = Al ( 1 ), Ga ( 2 )). Compounds 1 and 2 crystallize isotypically in the monoclinic system with a = 1136.42(6), b = 3267.9(1), c = 1360.37(8) pm, β = 94.320(7)° for 1 and a = 1140.88(6), b = 3261.7(2), c = 1360.20(8) pm, β = 94.641(7)° for 2 . Both the compounds display a distorted tetrahedral coordination of the central metal atom to give a spirocyclic EN4Si2 core. The Al–N bond lengths are in the range of186.5–186.9 pm and for the Ga–N distances values between 192.3and 193.1 pm are observed. Treatment of InCl3 with three equivalents of Li2Me2Si(NPh)2 yields the tris‐chelate [{Li(OEt2)}3In{Me2Si(NPh2)}3] 3 . Compound 3 crystallizes in the trigonal crystal system , space group R$\bar{3}$ c with a = 1852.4(1), and c = 3300.2(2) pm. The central indium atom is coordinated by threeMe2Si(NPh)22– ligands in a distorted octahedral arrangement withIn–N bond lengths of 230.8 pm.  相似文献   

14.
Preparation, Properties, and Molecular Structures of Dimethylmetal Alkoxides and Amides of Aluminium and Gallium Dimethylaluminium‐ ( 1 ) and Dimethylgallium‐o‐methoxyphenyl‐1‐ethoxide ( 2 ) were obtained by reaction of Me3Al and Me3Ga respectively with o‐Methoxyphenyl‐1‐ethanol in n‐pentane. Dimethylaluminium‐ ( 3 ) and dimethylgallium‐o‐methoxyphenyl‐2‐ethylamide ( 4 ) were prepared by treatment of Me2AlCl and Me2GaCl respectively with Lithium‐o‐methoxyphenyl‐2‐ethylamide. Trimethylgallium‐o‐methoxyphenylmethylamine‐Adduct ( 5 ) was isolated using reaction of Me3Ga with the corresponding amine. The compounds were characterised by 1H‐, 13C‐, and 27Al n.m.r. spectroscopy. The molecular structures of 2 and 5 were determined by X‐ray diffraction. Compounds 1 – 4 form brigded dimeric molecules. The bond distances of the central Ga2O2 ring in 2 correspond to those of compounds of similar structure.  相似文献   

15.
16.
17.
18.
19.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [AlCl2(NPEt3)]2, [GaI2(NPEt3)]2, and [GaI2(NPPh3)]2 [AlCl2(NPEt3)]2 ( 1 ) is made according to the known method by reaction of aluminium trichloride with the silylated phosphaneimine Me3SiNPEt3 in acetonitrile; it is isolated as colourless, moisture sensitive crystals. The phosphoraneiminato complexes [GaI2(NPEt3)]2 ( 2 ) and [GaI2(NPPh3)]2 ( 3 ), on the other hand, are obtained by redox reactions as pale yellow crystals; ( 2 ) of “gallium(I) iodide” with Me3SiNPEt3 in toluene and ( 3 ) of gallium with N-iodine triphenylphosphaneimine, INPPh3, in tetrahydrofuran. 1 and 3 are characterized spectroscopically and by crystal structure determinations; 2 is characterized only crystallographically. 1 : Space group Pbca, Z = 4; lattice dimensions at –70 °C: a = 1232.6(2), b = 1341.1(2), c = 1393.4(3) pm, R1 = 0.0315. 1 forms centrosymmetric molecules in which the Al atoms are linked via Al–N bonds of the two (NPEt3) groups; with 185.0 and 184.4 pm these bonds are of almost the same lengths. 2 : Space group Pbca, Z = 4; lattice dimensions at –80 °C: a = 1380.0(1), b = 1311.0(1), c = 1429.1(1) pm, R1 = 0.0273. 2 crystallizes isotypically with 1 . The gallium atoms of the centrosymmetric Ga2N2 four-membered ring are connected with Ga–N distances of equal length (190.9 pm). 3 · THF: Space group P212121, Z = 2; lattice dimensions at –140 °C: a = 1494.6(1), b = 1536.3(1), c = 974.6(1) pm, R1 = 0.0382. 3 forms dimeric molecules in which the gallium atoms are linked via the N atoms of the (NPPh3) groups to form a non-planar Ga2N2 four-membered ring of C2 symmetry with Ga–N bonds of equal lengths – within standard deviations – of 194.7 pm. The phosphoraneiminato groups are arranged in a synperiplanar way.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号