首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Here we report the in vitro selection of fast ribozymes capable of promoting the synthesis of a purine nucleotide (6-thioguanosine monophosphate) from tethered 5-phosphoribosyl 1-pyrophosphate (PRPP) and 6-thioguanine ((6S)Gua). The two most proficient purine synthases have apparent efficiencies of 284 and 230 M(-1) min(-1) and are both significantly more efficient than pyrimidine nucleotide synthase ribozymes selected previously by a similar approach. Interestingly, while both ribozymes showed good substrate discrimination, one ribozyme had no detectable affinity for 6-thioguanine while the second had a K(m) of approximately 80 muM, indicating that these ribozymes use considerably different modes of substrate recognition. The purine synthases were isolated after 10 rounds of selection from two high-diversity RNA pools. The first pool contained a long random sequence region. The second pool contained random sequence elements interspersed with the mutagenized helical elements of a previously characterized 4-thiouridine synthase ribozyme. While nearly all of the ribozymes isolated from this biased pool population appeared to have benefited from utilizing one of the progenitor's helical elements, little evidence for more complicated secondary structure preservation was evident. The discovery of purine synthases, in addition to pyrimidine synthases, demonstrates the potential for nucleotide synthesis in an 'RNA World' and provides a context from which to study small molecule RNA catalysis.  相似文献   

2.
Abstract

Ribozymes that distinguish a single base change in RNA were synthesized and used to specifically cleave c-Ha-ras messenger RNA. Using phosphorothioate containing oligonucleotide substrates, we have shown that Mg2+ binds to the pro-R oxygen of the phosphate and that the RNA cleavage reaction occurs via an in-line mechanism. Oligoribonucleotides containing a modified nucleoside are described.  相似文献   

3.
We recently used in vitro selection to identify 7S11, a deoxyribozyme that synthesizes 2',5'-branched RNA. The 7S11 DNA enzyme mediates the nucleophilic attack of an adenosine 2'-hydroxyl group at a 5'-triphosphate, forming 2',5'-branched RNA in a reaction that resembles the first step of in vivo RNA splicing. Here, we describe 7S11 characterization experiments that have two important implications for nucleic acid chemistry and biochemistry. First, on the basis of a comprehensive analysis of its substrate sequence requirements, 7S11 is shown to be generally applicable for the synthesis of a wide range of 2',5'-branched RNAs. Strict substrate sequence requirements are found at the two RNA nucleotides that directly form the branched linkage, and these requirements correspond to those nucleotides found most commonly at these two positions in natural spliced RNAs. Outside of these two nucleotides, most substrate sequences are tolerated with useful ligation activity, although rates and yields vary. Because chemical synthesis approaches to branched RNA are extremely limited in scope, the deoxyribozyme-based route using 7S11 will enable many experiments that require branched RNA. Second, comprehensive nucleotide covariation experiments demonstrate that 7S11 and its RNA substrates adopt a three-helix-junction structure in which the branch-site nucleotide is located at the intersection of the three helices. Because many natural ribozymes have multi-helix junctions, 7S11 is an interesting model system for catalytic nucleic acids.  相似文献   

4.
Lipopolysaccharide (LPS) is considered to cause various inflammatory reactions. We searched among microbial secondary metabolites for compounds that could inhibit LPS-stimulated adhesion between human umbilical vein endothelial cells (HUVEC) and human myelocytic cell line HL-60 cells. In the course of our screening, we isolated a novel cyclic depsipeptide, which we named heptadepsin, from the whole culture broth of Paenibacillus sp. The addition of heptadepsin prior to LPS stimulation decreased HL-60 cell-HUVEC adhesion without showing any cytotoxicity. It also inhibited the cellular adhesion induced by lipid A, the active component of LPS, but it did not inhibit TNF-alpha or IL-1beta-induced cell adhesion. The result of surface plasmon resonance (SPR) analysis revealed that heptadepsin interacted with lipid A directly. Thus, heptadepsin, a novel naturally occurring cyclic heptadepsipeptide, was shown to inactivate LPS by direct interaction with LPS.  相似文献   

5.
《Chemistry & biology》1998,5(11):669-678
Background: The ‘RNA world’ hypothesis posits ancient organisms employing versatile catalysis by RNAs. In particular, such a metabolism would have required RNA catalysts that join small molecules. Such anabolic reactions now occur very widely, for example in phospholipid, terpene, amino acid and nucleotide synthetic pathways in modern organisms. Present RNA systems, however, do not perform such reactions using substrates that do not base pair. Here we ask whether this lack is a methodological artifact due to the practice of selection-amplification, or a fundamental property of active sites reconstructed within RNA structures.Results: Three rationally modified RNA enzymes, Iso6-G, Iso6-2G and Iso6-3G, catalyze the formation of (5′→5′) polyphosphate-linked oligonucleotides in trans. One of these, Iso6-G RNA, has a specific substrate site for a guanosine triphosphate, GTP, dGTP or ddGTP, and one nonspecific substrate site for a terminal-phosphate-containing small molecule. This ribozyme catalyzes multiple turnovers, proceeding at a constant rate. Guanosine specificity is probably not attributable to Watson-Crick base pairing.Conclusions: Ribozymes can readily bind multiple small-molecule substrates simultaneously and catalyze reactions that build up larger products, apparently independent of substrate-RNA Watson-Crick base pairing. RNA enzymes therefore parallel proteins, which often overcome the entropic difficulties of positioning multiple small substrates for catalysis of anabolic reactions. These results support the idea of a complex ancestral metabolism based on RNA catalysis.  相似文献   

6.
7.
Various polyamine dendrimers with a triethanolamine core inhibit the activity of the Candida ribozyme by forming RNA-dendrimer complexes via electrostatic interactions.  相似文献   

8.
In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed "design and selection," new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.  相似文献   

9.
10.
《Chemistry & biology》1997,4(6):453-459
Background: Efficient operation of cellular processes relies on the strict control that each cell exerts over its metabolic pathways. Some protein enzymes are subject to allosteric regulation, in which binding sites located apart from the enzyme's active site can specifically recognize effector molecules and alter the catalytic rate of the enzyme via conformational changes. Although RNA also performs chemical reactions, no ribozymes are known to operate as true allosteric enzymes in biological systems. It has recently been established that small-molecule receptors can readily be made of RNA, as demonstrated by the in vitro selection of various RNA aptamers that can specifically bind corresponding ligand molecules. We set out to examine whether the catalytic activity of an existing ribozyme could be brought under the control of an effector molecule by designing conjoined aptamer-ribozyme complexes.Results: By joining an ATP-binding RNA to a self-cleaving ribozyme, we have created the first example of an allosteric ribozyme that has a catalytic rate that can be controlled by ATP. A 180-fold reduction in rate is observed upon addition of either adenosine or ATP, but no inhibition is detected in the presence of dATP or other nucleoside triphosphates. Mutations in the aptamer domain that are expected to eliminate ATP binding or that increase the distance between aptamer and ribozyme domains result in a loss of ATP-specific allosteric control. Using a similar design approach, allosteric hammerhead ribozymes that are activated in the presence of ATP were created and another ribozyme that can be controlled by theophylline was created.Conclusions: The catalytic features of these conjoined aptamer-ribozyme constructs demonstrate that catalytic RNAs can also be subject to allosteric regulation — a key feature of certain protein enzymes. Moreover, by using simple rational design strategies, it is now possible to engineer new catalytic polynucleotides which have rates that can be tightly and specifically controlled by small effector molecules.  相似文献   

11.
We have successfully designed and synthesized new fluorogenic probes that specifically target different classes of protein phosphatases. The fluorescence profiles of the probes have been studied using 12 different phosphatases, and results showed that, besides alkaline and tyrosine phosphatases, our probes were able to detect serine/threonine as well as acid phosphatases.  相似文献   

12.
Branched RNA molecules with a 2',5'-phosphodiester linkage are important biochemical intermediates. Lariat RNA is a particular type of branched RNA that is formed during intron splicing in vivo. Synthesis of branched and lariat RNA is challenging, and there are few general approaches that are applicable in vitro. Here we report the identification of divalent metal-dependent deoxyribozymes (DNA enzymes) that synthesize branched and lariat RNA. In vitro selection was used to obtain deoxyribozymes that selectively join an internal RNA 2'-hydroxyl with a 5'-terminal triphosphate in a convenient "binding arms" format. At least 85% yield of 2',5'-branched RNA is obtained at 37 degrees C and 20 mM Mn2+, pH 7.5 in 相似文献   

13.
Peptidase-catalyzed formation of macrocyclic lactams on solid phase identifies ring systems that are favorably bound in the enzyme active site. We evaluated several cyclic peptide motifs linked by ester bonds between the P2 and P1' or the P1 and P2' side chains. The depsipeptide represented by structure 5 was readily generated by a variety of peptidases from precursor omega-amino acids or omega-amino esters. This strategy for identifying ring systems for potential macrocyclic transition state analogues was demonstrated with the serine peptidases trypsin and chymotrypsin, with the aspartic peptidase pepsin, and with the zinc peptidase thermolysin.  相似文献   

14.
The rational and straightforward design of hairpin ribozymes that can be sequence-specifically induced by external oligonucleotides is described. Due to intrinsic signal amplification, their sensitivity is at least an order of magnitude increased compared to standard molecular beacons. We applied this system to the detection of microRNAs, a recently discovered class of small endogenous RNA molecules that are involved in gene regulation. We show that the cognate microRNA can reliably and sensitively be detected at low concentrations in a mix of other microRNA sequences. These probes may be useful in applications that require direct detection of minute amounts of small DNAs or RNAs.  相似文献   

15.
Highly purified transferrin mRNA characterized by electrophoretic and sedimentational homogeneity has been obtained from rat liver, with a sedimentation coefficient of 20S and a molecular weight of 0.86 MD. In a system consisting of a lysate of rabbit reticulocytes the Tf-mRNA programs the synthesis of an immunoreactive precursor of transferrin with a molecular weight of 82 kD. More than 50% of the nucleotide sequence of Tf-mRNA is present in the paired state.Institute of Bioorganic Chemistry, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 765–771, November–December, 1984.  相似文献   

16.
Highly purified transferrin mRNA characterized by electrophoretic and sedimentational homogeneity has been obtained from rat liver, with a sedimentation coefficient of 20S and a molecular weight of 0.86 MD. In a system consisting of a lysate of rabbit reticulocytes the Tf-mRNA programs the synthesis of an immunoreactive precursor of transferrin with a molecular weight of 82 kD. More than 50% of the nucleotide sequence of Tf-mRNA is present in the paired state.  相似文献   

17.
An RNA oligomer, r(GGACGAGUCC), which mimics the metal ion-binding motif of hammerhead ribozymes, was shown to fold by itself into a conformation possessing a metal ion binding property which is similar to that of the intact ribozyme (Tanaka, et al. J. Am. Chem. Soc. 2000, 122, 11303-11310). To determine the metal ion-binding site of this motif at an atomic level, we synthesized a series of RNA oligomers which were selectively labeled with a (15)N-labeled guanosine at each of the four guanosine residues. The (15)N-chemical shift perturbation with Cd(II) ions by one-dimensional (1D) (15)N NMR spectra showed that the chemical shift of the N7 of the G7 residue, N7/G7, in the metal ion-binding motif was specifically perturbed. This is the first experimental evidence to prove that the N7/G7 binds with a Cd(II) ion.  相似文献   

18.
Neutrophils play a key role in innate immunity, and the identification of new stimuli that stimulate neutrophil activity is a very important issue. In this study, we identified three novel peptides by screening a synthetic hexapeptide combinatorial library. The identified peptides GMMWAI, MMHWAM, and MMHWFM caused an increase in intracellular Ca2+ in a concentration-dependent manner via phospholipase C activity in human neutrophils. The three peptides acted specifically on neutrophils and monocytes and not on other non-leukocytic cells. As a physiological characteristic of the peptides, we observed that the three peptides induced chemotactic migration of neutrophils as well as stimulated superoxide anion production. Studying receptor specificity, we observed that two of the peptides (GMMWAI and MMHWFM) acted on formyl peptide receptor (FPR)1 while the other peptide (MMHWAM) acted on FPR2. Since the three novel peptides were specific agonists for FPR1 or FPR2, they might be useful tools to study FPR1- or FPR2-mediated immune response and signaling.  相似文献   

19.
20.
Fluorogenic substrates for assaying novel proteolytic enzymes could be rapidly identified using an easy, solid-phase combinatorial assay technology. The methodology was validated with leader peptidase of Escherichia coli using a subset of an intramolecularly quenched fluorogenic peptide library. The technique was extended toward the discovery of substrates for a new aspartic protease of pharmaceutical relevance (human napsin A). We demonstrated for the first time known to us that potent fluorogenic substrates can be discovered using extracts of cells expressing recombinant enzyme to screen the peptide library. The straightforward and rapid optimization of protease substrates greatly facilitates the drug discovery process by speeding up the development of high throughput screening assays and thus helps more effective exploitation of the enormous body of information and chemical structures emerging from genomics and combinatorial chemistry technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号