首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

2.
The growth of lithium dendrites and low coulombic efficiency restrict the development of Li metal anodes. Polymer electrolytes are expected to be promising candidates to solve the issue, but ways to obtain a polymer electrolyte that integrates high ionic conductivity and high mechanical toughness is still challenging. By introducing a double polymer network into the electrolyte design to reshape it, a tough polymer electrolyte was developed with high conductivity, and stable operation of lithium metal anodes was further realized. The double network (DNW) gel electrolyte has high modulus of 44.3 MPa and high fracture energy of 69.5 kJ m−2. The conductivity of DNW gel is 0.81 mS cm−1 at 30 °C. By using this gel electrolyte design, the lithium metal electrode could be cycled more than 400 times with a coulombic efficiency (CE) as high as 96.3 % with carbonate‐based electrolytes.  相似文献   

3.
Polymer–ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high‐performance all‐solid‐state rechargeable batteries. Composite electrolytes have been prepared with cubic‐phase Li7La3Zr2O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high‐resolution solid‐state Li NMR, we are able to track Li ion pathways within LLZO‐PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO‐LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.  相似文献   

4.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

5.
PEO/LiClO_4纳米SiO_2复合聚合物电解质的电化学研究   总被引:8,自引:0,他引:8  
将实验室制备的纳米二氧化硅和市售纳米二氧化硅粉末与PEO LiClO4复合 ,制得了复合PEO电解质 .它们的室温离子电导率可比未复合的PEO电解质提高 1~ 2个数量级 ,最高可以达到 1 2 4× 10 - 5S cm .离子电导率的提高有两方面的原因 :一是无机二氧化硅粉末的加入抑制了PEO的结晶 ,是二氧化硅粉末和聚合物电解质之间形成的界面对电导率的提高也有一定的作用 .在进一步加入PC EC(碳酸丙烯酯 碳酸乙烯酯 )混合增塑剂后制得的复合凝胶PEO电解质 ,可使室温离子电导率再提高 2个数量 ,达到 2× 10 - 3 S cm .用这种复合凝胶PEO电解质组装了Li|compositegelelectrolyte|Li半电池 ,并测量了该半电池的交流阻抗谱图随组装后保持时间的变化 ,实验观察到在保持时间为 144h以内钝化膜的交流阻抗迅速增大 ,但在随后的时间内逐渐趋于平稳 ,表明二氧化硅粉末的加入可以有效地抑制钝化膜的生长  相似文献   

6.
The cross-linking gel copolymer electrolytes containing alkyl acrylates, triethylene glycol dimethacrylate, and liquid electrolyte were prepared by in situ thermal polymerization. The gel polymer electrolytes containing 15 wt% polymer content and 85 wt% liquid electrolyte content with sufficient mechanical strength showed the high ionic conductivity around 5?×?10?3 Scm?1 at room temperature. The gel electrolytes containing different polymer matrices were prepared, and their physical observation and conductivity were discussed carefully. The cross-linking copolymer gel electrolytes of alkyl acrylates with other monomers were designed and synthesized. The results showed that copolymerization can improve the mechanical properties and ionic conductivities of the gel electrolytes. The polymer matrices of gels had excellent thermal stability and electrochemical stability. The scanning electron microscope analysis showed the gel electrolyte was the homogeneous structure, and the cross-linking polymer host was the porous three-dimensional network structure, which demonstrated the high conductivity of the gel electrolytes. The gel polymer Li-ion battery was prepared by this in situ thermal polymerization. The cell exhibited high charge-discharge efficiency at 0.1 C. The results of LiFePO4-PEA-Li cell and graphite-PEA-Li cell showed that gel polymer electrolytes have good compatibility with the battery electrodes materials.  相似文献   

7.
The growth of lithium dendrites and low coulombic efficiency restrict the development of Li metal anodes. Polymer electrolytes are expected to be promising candidates to solve the issue, but ways to obtain a polymer electrolyte that integrates high ionic conductivity and high mechanical toughness is still challenging. By introducing a double polymer network into the electrolyte design to reshape it, a tough polymer electrolyte was developed with high conductivity, and stable operation of lithium metal anodes was further realized. The double network (DNW) gel electrolyte has high modulus of 44.3 MPa and high fracture energy of 69.5 kJ m?2. The conductivity of DNW gel is 0.81 mS cm?1 at 30 °C. By using this gel electrolyte design, the lithium metal electrode could be cycled more than 400 times with a coulombic efficiency (CE) as high as 96.3 % with carbonate‐based electrolytes.  相似文献   

8.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

9.
Solid polymer electrolytes with relatively low ionic conductivity at room temperature and poor mechanical strength greatly restrict their practical applications. Herein, we design semi-interpenetrating network polymer (SNP) electrolyte composed of an ultraviolet-crosslinked polymer network (ethoxylated trimethylolpropane triacrylate), linear polymer chains (polyvinylidene fluoride-co-hexafluoropropylene) and lithium salt solution to satisfy the demand of high ionic conductivity, good mechanical flexibility, and electrochemical stability for lithium metal batteries. The semi-interpenetrating network has a pivotal effect in improving chain relaxation, facilitating the local segmental motion of polymer chains and reducing the polymer crystallinity. Thanks to these advantages, the SNP electrolyte shows a high ionic conductivity (1.12 mS cm−1 at 30 °C), wide electrochemical stability window (4.6 V vs. Li+/Li), good bendability and shape versatility. The promoted ion transport combined with suppressed impedance growth during cycling contribute to good cell performance. The assembled quasi-solid-state lithium metal batteries (LiFePO4/SNP/Li) exhibit good cycling stability and rate capability at room temperature.  相似文献   

10.
Solid polymer electrolytes for Lithium batteries applications are commonly prepared by dissolving a lithium salt in poly(ethylene oxide) (PEO)‐based materials. Their performance is strongly related to the structure of the polymer network. In this article, a new salt‐in‐polymer electrolyte prepared by the fast and easy radical photopolymerization of PEO acrylate oligomers is studied. Here, a difunctional monomer used as the polymer backbone is copolymerized with monofunctional monomers of different length and concentration. Thus, the crosslinking density and conductivity are changed. These systems are investigated by a detailed NMR study yielding local dynamics and mass transport by temperature‐dependent spin‐lattice relaxation time and PFG‐NMR diffusion measurements for different nuclei (7Li and 19F). The results indicate that a sufficiently long monofunctional oligoether improves the properties, since it provides a lower crosslinking density as well as more coordinating oxygens for the Li ions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1571–1580  相似文献   

11.
New polymer gel electrolytes based on polyester diacrylates and LiClO4 salt solutions in organic solvents are developed for lithium ion and lithium polymer batteries with a high ionic conductivity up to 2.7 × 10?3 Ohm?1cm?1 at the room temperature. To choose the optimum liquid electrolyte composition, the dependence is studied of physico-chemical parameters of new gel electrolytes on the composition of the mixture of aprotic organic solvents: ethylene carbonate, propylene carbonate, and λ-butyrolacton. The bulk conductivity of gel electrolytes and exchange currents at the gel electrolyte/Li interface are studied using the electrochemical impedance method in symmetrical cells with two Li electrodes. The glass transition temperature and gel homogeneity are determined using the method of differential scanning calorimetry. It is found that the optimum mixture is that of propylene carbonate and λ-butyrolacton, in which a homogeneous polymer gel is formed in a wide temperature range of ?150 to +50°C.  相似文献   

12.
《印度化学会志》2023,100(4):100959
The polymer-ceramic composite electrolytes have great application potential for next-generation solid state lithium batteries, as they have the merits to eliminate the problem of liquid organic electrolytes and enhancing chemical/electrochemical stability. However, polymer-ceramic composite electrolytes show poor ionic conductivity, which greatly hinders their practical applications. In this work, the addition of plasticizer ethylene carbonate (EC) into polymer-ceramic composite electrolyte for lithium batteries effectively promotes the ionic conductivity. A high ionic conductivity can be attained by adding 40 wt% EC to the polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)-Li7La3Zr2O12 (LLZO) based polymer-ceramic composite electrolytes, which is 2.64 × 10−4 S cm−1 (tested at room temperature). Furthermore, the cell assembled with lithium metal anode, this composite electrolyte, and LiFePO4 cathode can work more than 80 cycles at room temperature (tested at 0.2 C). The battery delivers a high reversible specific capacity after 89 cycles, which is 119 mAh g−1.  相似文献   

13.
Review on gel polymer electrolytes for lithium batteries   总被引:1,自引:0,他引:1  
This paper reviews the state-of-art of polymer electrolytes in view of their electrochemical and physical properties for the applications in lithium batteries. This review mainly encompasses on five polymer hosts namely poly(ethylene oxide) (PEO), poly(acrylonitrile) (PAN), poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVdF) and poly(vinylidene fluoride-hexafluoro propylene) (PVdF-HFP) as electrolytes. Also the ionic conductivity, morphology, porosity and cycling behavior of PVdF-HFP membranes prepared by phase inversion technique with different non-solvents have been presented. The cycling behavior of LiMn2O4/polymer electrolyte (PE)/Li cells is also described.  相似文献   

14.
Developing high-performance functional polymer-based electrolytes is important for realizing next generation safe lithium metal batteries. In this study, a new type of quasi-solid polymer network electrolyte (SIPH-x-y%) was prepared by combining synthesized polymer network (SIPH) containing urethane bond linked ionic liquids (ILs), polyethylene glycol (PEG), and disulfide bond moieties, lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), and glyme type additive. It was found that SIPH-20-40% was mechanically flexible, self-healable, and showed high ionic conductivity of 2.67×10−4 S cm−1. Also, SIPH-20-40% possesses a high lithium ion transference number of 0.43 and good electrochemical stability. These properties enabled the SIPH-20-40% electrolyte membrane to support Li/Li symmetrical cell to cycle stably during long term Li plating and stripping. The Li/SIPH-20-40%/LFP showed high delivered specific capacity and good stability (166.1 mAh g−1 after 106 cycles at 0.2 C). Such glyme doped polymer network electrolyte provides new experimental findings for developing polymer-based electrolyte with excellent mechanical integrity and battery related properties.  相似文献   

15.
液态锂离子电池由于采用易泄露、易挥发、易燃烧的碳酸酯有机溶剂,在高温或极端条件下使用时,存在极大的安全隐患.使用固态电解质替代液态电解液,可以从根本上避免此类安全问题的发生,与此同时还可以大幅度提升固态锂电池的能量密度.固态电解质又分为无机固态电解质和聚合物固态电解质2大类.无机固态电解质能够在宽的温度范围内保持化学稳定性,并且电化学窗口较宽,机械强度更高,室温离子电导率较高,但脆性较大,柔韧性差,制备工艺复杂,成本较高.聚合物固态电解质,室温离子电导率偏低,难以满足室温锂离子电池的应用,但其加工成型容易,形状可变.比较而言,固态聚合物电解质,更适宜大规模生产,离产业化相对更近.固态聚合物电解质中研究较多的是聚醚基固态聚合物电解质(如聚环氧乙烷和聚环氧丙烷),但其缺点是室温离子电导率低,需要对其改性或进一步开发综合性能更加优异的其他固态聚合物电解质.聚碳酸酯基固态聚合物电解质由于其特殊的分子结构(含有强极性碳酸酯基团)以及高介电常数,可以有效减弱阴阳离子间的相互作用,提高载流子数量,从而提高离子电导率,因此被认为是一类非常有前途的固态聚合物电解质体系.基于此,本文重点综述了最近研究热点的聚碳酸酯基固态聚合物电解质,包括聚(三亚甲基碳酸酯)体系、聚(碳酸丙烯酯)体系、聚(碳酸乙烯酯)体系和聚(碳酸亚乙烯酯)体系等,并详细阐述了上述每种聚碳酸酯基固态聚合物电解质的制备、电化学性能、优缺点及改性手段,归纳出其离子配位-解配位过程和离子扩散机制,还对聚碳酸酯基固态聚合物电解质的未来发展方向和研究趋势望进行了预测和展望.  相似文献   

16.
Despite the high specific capacity of Li−S battery, shuttle effect of lithium polysulfides (LiPSs) and safety issue pose a great challenge to realize its commercial application. Replacing liquid electrolyte with poly (ethylene oxide) (PEO) -based solid-state electrolyte is considered as a promising method to boost the safety, but the shuttle effect of LiPSs cannot be completely eliminated. In this work, a new kind of double-layer PEO-based polymer electrolyte is designed to restrict the LiPSs. The layer next to cathode consists of PEO and poly(vinylpyrrolidone) (PVP). The other layer consists of PEO. PVP with abundant of amide groups has been proved to have strong affinity to LiPSs. The strong interaction between LiPSs and carbonyl groups in amide is verified by Attenuated Total Reflection-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy tests. As a result, the assembled Li−S battery exhibits a specific capacity of 1100 mAh g−1 and capacity retention of 347 mAh g−1 after 200 cycles at 60 °C and 0.05 C, while the capacity retention of the battery without PVP-blended PEO electrolyte remains only 27 % at the same conditions.  相似文献   

17.
锂离子电池PMMA-VAc聚合物电解质的制备与性质研究   总被引:5,自引:0,他引:5  
以甲基丙烯酸甲酯(MMA)和醋酸乙烯酯(VAc)为单体, 用乳液聚合法合成聚甲基丙烯酸甲酯-醋酸乙烯酯聚合物(PMMA-VAc), 并以此聚合物制备了新型聚烯烃膜支撑的聚合物膜及聚合物电解质. 用红外光谱(FTIR)、凝胶色谱(GPC)、差热和热重分析(DSC/TG)、扫描电镜(SEM)及电池充放电实验等方法研究了聚合物、聚合物膜和聚合物电解质的性质. 红外光谱结果表明, MMA与VAc通过各自的C=C双键打开聚合成PMMA-VAc. PMMA-VAc易于分散在混合碳酸酯溶剂中并形成凝胶, 凝胶粘度随PMMA-VAc浓度的增加而增加, 当浓度为4%时成膜效果最佳. PMMA-VAc膜具有大量的微孔结构, 具有极强的吸液性能. PMMA-VAc膜具有良好的热稳定性: 在380 ℃范围内保持稳定. 聚烯烃膜支撑的PMMA-VAc膜室温下的离子电导率为1.85×10-3 S•cm-1, 用作为锂离子电池的聚合物电解质时, 电池具有良好的循环稳定性和倍率性能.  相似文献   

18.
Solid‐state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next generation Li‐ion batteries for better safety and stability. Of various types of solid electrolytes, composite polymer electrolytes exhibit acceptable Li‐ion conductivity due to the interaction between nanofillers and polymer. Nevertheless, the agglomeration of nanofillers at high concentration has been a major obstacle for improving Li‐ion conductivity. In this study, we designed a three‐dimensional (3D) nanostructured hydrogel‐derived Li0.35La0.55TiO3 (LLTO) framework, which was used as a 3D nanofiller for high‐performance composite polymer Li‐ion electrolyte. The systematic percolation study revealed that the pre‐percolating structure of LLTO framework improved Li‐ion conductivity to 8.8×10?5 S cm?1 at room temperature.  相似文献   

19.
Owing to their improved mechanical properties and good polymer miscibility, the blend gel polymer electrolytes of poly (vinylidene fluoride) (PVdF)-poly(ethyl methacrylate) (PEMA) have been prepared using solvent casting technique and characterized for their electrochemical performances. The electrolyte shows a maximum ionic conductivity of 1.5 × 10−4 S cm−1 at 301 K for the 90:10 blend ratio of PVdF:PEMA system with good transport property. The ionic conductivity is enhanced, in accompany with improved microstructural homogeneity, at low PEMA contents, while the decreased conductivity at high contents has been attributed to increasing crystalline PEMA domains. With the optimum PVdF:PEMA ratio, the complex system was found to facile reasonable ionic transference number and exhibit superior interfacial stability with Li electrode.  相似文献   

20.
Amphiphilic graft copolymers were prepared via the radical copolymerization of poly(ethylene oxide) (PEO) macromonomers with fluorocarbon or hydrocarbon acrylates in toluene with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. 1H NMR spectroscopy confirmed that the composition of the graft copolymers corresponded well to the monomer feed. For gel electrolytes prepared from the amphiphilic copolymers, the nature of the ionophobic parts of the amphiphilic graft copolymers had a great influence on the ion conductivity. Gel electrolytes based on graft copolymers containing fluorocarbon side chains showed significantly higher ion conductivity than electrolytes based on graft copolymers containing hydrocarbon groups. The ambient‐temperature ion conductivity was about 2.6 mS/cm at 20 °C for a gel electrolyte based on an amphiphilic graft copolymer consisting of an acrylate backbone carrying PEO and fluorocarbon side chains. Corresponding gels based on graft copolymers with PEO side chains and hydrocarbon groups showed an ambient‐temperature ion conductivity of about 1.2 mS/cm. The gel electrolytes contained 30 wt % copolymer and 70 wt % 1 M LiPF6 in an ethylene carbonate/γ‐butyrolactone (2/1 w/w) mixture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2223–2232, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号