首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
Reproducible and uncharacteristic tensile stress–strain behavior of cured glassy epoxy‐amine networks produces distinctive fracture surfaces. Test specimens exhibiting plastic flow result in mirror‐like fracture surfaces, whereas samples that fail during yield or strain softening regions possess nominal mirror‐mist‐hackle topography. Atomic force microscopy and scanning electron microscopy reveal branched nodule morphologies in the 50‐nm size scale that may be responsible for the unusual tensile properties. Current hypothesis is that plastic flow of the glassy thermoset occurs through the existence and deformation of these nodular nanostructures. The thermal cure profile of the epoxy‐amine thermoset affects the size and formation of the nodular nanostructure. Eliminating vitrification during thermoset polymerization forms a more continuous phase, reduction in size of the nodules, and eliminates the capacity of the material to yield in plastic flow. This maximizes nanostructure connectivity of the glassy epoxy‐amine thermoset and reduces strain to failure significantly. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1333–1344.  相似文献   

2.
In this study, the effect of water addition on cure kinetics in an epoxy‐amine thermoset was investigated. Near FTIR spectra demonstrated that a small amount of water addition significantly accelerated the cure reaction in terms of epoxide conversion, with water acting as a catalyst for the reaction. Use of a modified mechanistic model allowed direct comparison of the effect of hydroxyl groups generated from water addition to those generated from the polymer chain. The comparison of those kinetic parameters shows that the two effects are very close, in which difference in the logarithmic value of the reaction constant is less than one order of magnitude over all the reaction conditions. The kinetic study also confirmed a strong negative substitution effect for this system. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
环氧树脂共混物相结构的调控方法研究   总被引:4,自引:0,他引:4  
研究了环氧树脂(E51)/聚砜(PSF)共混物相结构的控制方法.通过抑制相分离、控制预固化的反应程度控制环氧树脂的分子量,固化后可获得不同的共混物相结构.依据红外测定的固化反应程度设定固化程序,可有效控制共混物的相结构.加入促进剂三氟化硼-乙基胺(BTF-EA)可提高固化反应速度,使相分离结构在早期被抑制,以获得小微区的相结构.  相似文献   

4.
Epoxy–aromatic diamine formulations are simultaneously modified with two immiscible thermoplastics (TPs), poly(ether imide) (PEI) and polysulfone (PSF). The epoxy monomer is based on diglycidyl ether of bisphenol A and the aromatic diamines (ADs) are either 4,4′‐diaminodiphenylsulfone or 4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline). The influence of the TPs on the epoxy–amine kinetics is investigated. It is found that PSF can act as a catalyst. The presence of the TP provokes an increase of the gel times. Cloud‐point curves (temperature vs. composition) are shown for epoxy/PSF/PEI and epoxy/PSF/PEI/AD initial mixtures. Phase separation conversions are reported for the reactive mixtures with various TP contents and PSF/PEI proportions. On the basis of phase separation and gelation curves, conversion–composition phase diagrams at constant temperature are generated for both systems. These diagrams can be used to design particular cure cycles to generate different morphologies during the phase separation process, which is discussed in the second part of this series. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3953–3963, 2004  相似文献   

5.
杨卉  谢续明 《高分子学报》2000,19(2):215-218
研究了不同分子量的环氧预聚物对双酚A型双官能团环氧树脂 /聚砜 (PSF) /固化剂 (二氨基二苯基砜 ,DDS)体系相分离结构的影响 .通过红外光谱 (FTIR)和动态热机械分析 (TMA)对反应转化率、玻璃化温度以及固化温度的关系的研究 ,表明环氧预聚物分子量较小时 ,凝胶点和玻璃化是影响相结构的关键因素 ;环氧分子量较大时 ,环氧扩链后粘度的变化则成为抑制相分离的重要因素 .电子显微镜 (SEM)结果表明改变环氧预聚物分子量可以达到调控相结构的目的 ,随着预聚物分子量的增大 ,体系的微区尺寸减小 .  相似文献   

6.
Reaction-induced phase separation in rubber-modified epoxy resin   总被引:1,自引:0,他引:1  
The phase separation mechanism,and structure development during curing of epoxy with a novel liquid rubber-ZR were investigated by time-resolved light scattering,optical microscope and differential scanning calonmetry (DSC) The mixture loaded with curing agent was a single-phase system in the early stage of curing.When the cure reaction proceeded,phase separation took place via the spinodal decomposition induced by polymerization of epoxy resin.This was supported by the characteristic change of light scattering profile with curing time.Cure reaction plays an important role in the progress of phase separation.The bigger the cure reaction rate is,the longer periodic distance will be.The overall two-phase structure was basically locked in when the conversion approached 80% estimated by DSC,and finally the co-continuous two-phase structure was successfully obtained.  相似文献   

7.
The cure reactions of tetraglycidyl methylene diamine (TGMDA) epoxy cured with tetrasubstituted aromatic diamine on one hand and diglycidyl ether of bisphenol A and diglycicyl ether tetrabromobisphenol A epoxies cured with methylene bis (phenyl‐4‐cyanate) on the other hand are reported. Systematic Fourier transform infrared (FTIR) spectroscopy studies of the cure reaction of epoxy and epoxy–cyanate during thermal cycles are presented. FTIR studies indicate that the reaction of TGMDA monomer is total but the network contains a large amount of primary amine. The cyanate monomer reacts rapidly to form triazine structures. Then the epoxy monomers homopolymerize and crosslink with free cyanate groups. The gas chromatography/mass spectrometry study of volatile products evolved during the polymer thermal degradation shows the dehydration of the epoxy network and the decomposition of the amine structure. The FTIR and solid‐phase 13C nuclear magnetic resonance analysis revealed that the ether functions and the amine groups are temperature sensitive but the triazine structure is not. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The influence of the cure process and the resulting reaction‐induced phase separation (RIPS) on the crystallization and melting behavior of polyoxymethylene (POM) in epoxy resin diglycidylether of bisphenol A (DGEBA) blends has been studied at different cure temperatures (180 and 145 °C). The crystallization and melting behavior of POM was studied with DSC and the simultaneous blend morphology changes were studied using OM. At first, the influence of the epoxy monomer on the dynamically crystallized POM was investigated. Secondly, a cure temperature above the melting point of POM (Tcure = 180 °C) was applied for blends with curing agent to study the influence of resulting phase morphology types on the crystallization behavior of POM in the epoxy blends. Large differences between particle/matrix and phase‐inverted structures have been observed. Thirdly, the cure temperature was lowered below the melting temperature of POM, inducing isothermal crystallization prior to RIPS. As a consequence, a distinction was made between dynamically and isothermally crystallized POM. Concerning the dynamically crystallized material, a clear difference could be made between the material crystallized in the homogeneous sample and that crystallized in the phase‐separated structures. The isothermally crystallized POM was to a large extent influenced by the conversion degree of the epoxy resin. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2456–2469, 2007  相似文献   

9.
Poly(methyl methacrylate), PMMA, was chosen as an additive for an epoxy system based on the cured product of (a) diglycidyl ether of bisphenol A labeled with 5-dimethylaminonaphthalene-1-(2-aminoethyl) sulfonamide and (b) 1,5-diamino-2-methylpentane. Fourier transformed infrared spectroscopy (near, FT-NIR, and medium, FT-MIR, ranges) and steady-state fluorescence spectroscopy were used to monitor the epoxy cure reaction and the induced phase separation. The PMMA seems to exert a change in the mechanism of the epoxy cure reaction by means of a slight enhancement of the secondary amino group reactivity. It has been demonstrated that following the fluorescence response of the dansyl chromophore chemically bonded to the epoxy component is a way to monitor the cure process in a general sense, not only accounting for the chemical changes but also being additionally possible to detect the reaction-induced phase separation at a molecular scale. The fluorescence results, in terms of the first moment of the emission band, point out that the dilution effect is affecting the physicochemical changes of the modified epoxy system quite more exclusively than the chemical changes. Finally, a semiempirical model to explain the behavior of the dansyl fluorescence during the curing of a PMMA/diepoxy–diamine blend showing a reaction-induced phase separation has been proposed. The proposed model allows estimating the composition of the phases after nearly complete cure.  相似文献   

10.
A theoretical approach to thermoset cure kinetics based on Arrhenius kinetics and mobility was developed by considering the activation of the reacting group and chain mobility as elementary steps for reaction. This extended kinetic equation was successfully applied to the curing of an epoxy by an amine, the trimerization of a cyanate, and to the polymerization of methyl methacrylate. Full agreement between theory and experimental data was obtained in all cases. The activation energies for chain mobility were exceptionally low (0.3–1 kJ/mol for bisphenol-A-based epoxy and cyanate) which indicates that the structural units must undergo only small-angle rotational oscillations to allow a reaction. A theoretical time–temperature–transformation (TTT) diagram is also presented. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
The cloud‐point curves of polystyrene (PS) mixed with reactive epoxy monomers based on diglycidyl ether of bisphenol A with stoichiometric amounts of 4,4′‐methylenebis(2,6‐diethylaniline) were experimentally studied. A thermodynamic analysis of the phase‐separation process in these epoxy‐modified polymers was performed that considered the composition dependence of the interaction parameter, χ(T2) (where T is the temperature and Φ2 is the volume fraction of polystyrene), and the polydispersity of both polymers. In this analysis, χ(T2) was considered the product of two functions: one depending on the temperature [D(T)] and the other depending on the composition [B2)]. For mixtures without a reaction, the cloud‐point curves showed upper critical solution temperature behavior, and the dependence of χ(T2) on the composition was determined from the threshold point, that is, the maximum cloud‐point temperature. During the isothermal reactions of mixtures with different initial PS concentrations, the dependence of χ(T2) on the composition was determined under the assumption that, at each conversion level, the D(T) contribution to the χ(T2) value had to be constant independently of the composition. For these mixtures, it was demonstrated that the changes in the chemical structure produced by the epoxy–amine reaction reduced χ(T2). This effect was more important at lower volume fractions of PS. Nevertheless, the decrease in the absolute value of the entropic contribution to the free energy of mixing was the principal driving force behind the phase‐separation process. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1351–1360, 2004  相似文献   

12.
The effect of cure temperature and modifier proportion on the miscibility of an epoxy–amine system with a thermoplastic modifier was studied by analysis of phase diagrams, morphologies, and glass transitions. Phase diagrams for the system before and during reaction were obtained from a thermodynamic analysis of phase separation using a model based on Flory–Huggins theory. Different types of morphologies were observed and analyzed in function of cure temperature and modifier proportion. The validity of the thermodynamic model was checked by comparing with observed morphologies. Two glass transitions were observed for most of the modified systems indicating that a phase separation was occurred.  相似文献   

13.
Highly filled thermosets are used in applications such as integrated circuit (IC) packaging. However, a detailed understanding of the effects of the fillers on the macroscopic cure properties is limited by the complex cure of such systems. This work systematically quantifies the effects of filler content on the kinetics, gelation and vitrification of a model silica‐filled epoxy/amine system in order to begin to understand the role of the filler in IC packaging cure. At high cure temperatures (100°C and above) there appears to be no effect of fillers on cure kinetics and gelation and vitrification times. However, a decrease in the gelation and vitrification times and increase the reaction rate is seen with increasing filler content at low cure temperatures (60‐90°C). An explanation for these results is given in terms of catalysation of the epoxy amine reaction by hydrogen donor species present on the silica surface and interfacial effects.  相似文献   

14.
This article investigates the role of solvation effects in the autocatalysis reaction of the epoxy–amine cure reaction. A single‐phase three component model was developed encompassing a two‐component reaction mix and a single polymeric product. The reaction was modelled as an SN2 reaction. Association of the nucleophile with each component in the reaction was defined via a binding constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3579–3586, 2004  相似文献   

15.
A novel fluorinated thermoplastic (FT) was synthesized from diglycidyl ether of bisphenol A (DGEBA), and 3‐(trifluoromethyl)aniline. FT was found to be miscible with DGEBA as shown by the existence of a single glass transition temperature (Tg) within the whole composition range. On the basis of several experimental techniques, it was found that upon heating etherification reaction takes place between FT and DGEBA. A DGEBA‐aromatic diamine (4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline) formulation was modified with the FT. The influence of FT on the epoxy‐amine kinetics was investigated. Both structural parameters, gelation, and vitrification, were found to be affected by etherification reaction between epoxy and hydroxyls groups belonging to FT. The presence of ether linkages induced system stoichiometry modification. In addition, the curing conditions influence on FT migration towards the surface was studied on samples prepared with 20 wt % of modifier. SEM–EDX analysis confirmed that modified systems exhibits notable fluorine enrichment within the uppermost 200 μm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2781–2792, 2007  相似文献   

16.
The cure kinetics of an epoxy–amine commercial thermoset system have been investigated with the isothermal differential scanning calorimetry technique. In particular, a kinetic study has been performed in the glass–transition zone, in which diffusion phenomena compete with the chemical transformations and the overall reaction rate is partially slowed by the reduced segmental chain mobility. A generalized form of the Vogel equation has been formulated to account for the effect of the increasing glass–transition temperature on the chain mobility and, therefore, on the overall reaction rate. The kinetic model has been expressed with two factors representing the chemical reaction rate and the segmental mobility reduction. As the main result, the activation energy relative to the diffusion phenomena has been found to be very low, having a value of 42.5 K ≈ 0.356 kJ/mol, which is compatible only with the small‐angle rotation of the reactive unit. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3757–3770, 2002  相似文献   

17.
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004  相似文献   

18.
In this study, the hyperbranched polyester were successfully grafted onto graphene oxide (GO). The mechanical performance and curing kinetics of epoxy resin (EP), EP/ graphene oxide (EP/GO), and EP/ hyperbranched polyester grafted GO (EP/GO‐B) were investigated by means of mechanical tests and differential scanning calorimetry (DSC). Results revealed that the presence of GO lowered the cure temperature and accelerated the curing of EP, and the addition of GO‐B exhibited a stronger effect in accelerating the cure of EP compared with GO. Activation energies were calculated using Kissinger approach, and Ozawa approach, respectively. Results revealed lowered activation energy after the addition of GO or GO‐B at low degrees of cure, indicating that GO had a large effect on the curing reaction. The presence of GO facilitated the curing reaction, especially the initial epoxy‐amine reaction. Moreover, GO‐B exhibited better performance. Related mechanism was proposed.  相似文献   

19.
The investigation of the cure kinetics of a diglycidyl ether of bisphenol A (DGEBA)/phenol‐novolac blend system with different phenolic contents initiated by a cationic latent thermal catalyst [N‐benzylpyrazinium hexafluoroantimonate (BPH)] was performed by means of the analysis of isothermal experiments using a differential scanning calorimetry (DSC). Latent properties were investigated by measuring the conversion as a function of curing temperature using a dynamic DSC method. The results indicated that the BPH in this system for cure is a significant thermal latent initiator and has good latent thermal properties. The cure reaction of the blend system using BPH as a curing agent was strongly dependent on the cure temperature and proceeded through an autocatalytic kinetic mechanism that was accelerated by the hydroxyl group produced through the reaction between DGEBA and BPH. At a specific conversion region, once vitrification took place, the cure reaction of the epoxy/phenol‐novolac/BPH blend system was controlled by a diffusion‐control cure reaction rather than by an autocatalytic reaction. The kinetic constants k1 and k2 and the cure activation energies E1 and E2 obtained by the Arrhenius temperature dependence equation of the epoxy/phenol‐novolac/BPH blend system were mainly discussed as increasing the content of the phenol‐novolac resin to the epoxy neat resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2945–2956, 2000  相似文献   

20.
Ultrasonic waves propagation acts as a dynamic mechanical deformation on a material. When, during ultrasonic wave propagation, chemical or physical changes occurs, the evolution of an elastic modulus can be monitored. Therefore, this technique can be considered a powerful tool for non-destructive cure monitoring with a potential for “in situ” applications. In this work, the isothermal cure of a model epoxy resin cured with an amine is studied using propagation of longitudinal ultrasonic wave. The epoxy to amine ratio is optimized in order to reach full conversion of the amine groups during curing. The relative changes in the ultrasonic velocity and attenuation, measured by the transmission technique, have been applied to the calculation of the longitudinal modulus. The ultrasonic modulus has been compared with the degree of reaction measured using Differential Scanning Calorimetry (DSC). Furthermore a correlation between the ultrasonic modulus and the crosslinking density is presented combining DSC data with the stoichiometry of reactants according with the statistical theory of Miller and Macosko. The plot of the ultrasonic modulus as a function of the crosslinking density suggested that the theory of rubber elasticity can not be applied to the ultrasonic bulk longitudinal modulus as a consequence of the small deformation involved in the propagation of the ultrasonic waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号