首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
左敏 《高分子科学》2017,35(12):1524-1539
The variation of phase morphology, critical temperature of demixing, and molecular dynamics for polystyrene/poly(vinyl methyl ether)(PS/PVME) blends induced by hydrophilic nanosilica(A200) or hydrophobic nanosilica(R974) was investigated. With the phase separation of blend matrix, A200 migrated into PVME-rich phase due to strong interaction between A200 and PVME, while R974 moved into PS-rich phase. The thermodynamic miscibility and concentration fluctuation during phase separation of blend matrix were remarkably retarded by A200 nanoparticles due to the surface adsorption of PVME on A200, verified by the correlation length ξ near the critical region from rheological measurement and the weakened increment of reversing heat capacity(ΔC_p) during glass transition via modulated differential scanning calorimetry(MDSC). The restricted chain diffusion induced by nanosilica still occurred despite no influence of A200 and R974 on the segmental dynamics of homogenous blend matrix. The interactions between nanosilica and polymer components could restrict the terminal relaxation of blend matrix and further manipulate their phase behavior.  相似文献   

2.
Photooxidation of blends of polystyrene and poly (vinyl methyl ether) was studied at 30°C. The oxygen uptake by PS was negligible but PVME oxidized readily. The induction period of oxidation of PVME was prolonged by the presence of PS. The steady state rate of oxidation of the blend was strongly influenced by the segmental mobility of the blend which also governed the kinetics and morphology of phase separation. The molecular weight of PVME decreased more slowly in the blend as PS content increased. It was believed that the reaction between PVME radicals and PS resulted in less reactive PS radicals which retarded oxidation. The PS radicals eventually underwent chain scission reactions.  相似文献   

3.
Anisotropic phase separation of polystyrene/poly(vinyl methyl ether) (PS/PVME) blends was induced by photoisomerization of trans-stilbene moieties labeled on the PS chains (abbreviated hereafter as PSS chains) using linearly polarized light. As temperature increases, the anisotropy becomes weaker and eventually disappears at 10°C above the glass transition of the PSS component. It was concluded that the elastic stress associated with the spatial distribution of the reaction is responsible for this morphological anisotropy.  相似文献   

4.
We present in this work a new model to describe the component segmental dynamics in miscible polymers blends as a function of pressure, temperature, and composition. The model is based on a combination of the Adam-Gibbs (AG) theory and the concept of the chain connectivity. In this paper we have extended our previous approach [D. Cangialosi et al. J. Chem. Phys. 123, 144908 (2005)] to include the effects of pressure in the component dynamics of miscible polymer blends. The resulting model has been tested on poly(vinyl methyl ether) (PVME)/polystyrene (PS) blends at different concentrations and in the temperature range where the system is in equilibrium. The results show an excellent agreement between the experimental and calculated relaxation times using only one fitting parameter. Once this parameter is known the model allows calculating the size of the relevant length scale where the segmental relaxation of the dielectrically active component takes place, i.e., the so called cooperative rearrangement region (CRR) in the AG framework. Thus the size of the CRR for PVME in the blends with PS has been determined as well as its dependence with pressure, temperature, and concentration.  相似文献   

5.
Phase separation of polystyrene/poly (vinyl methyl ether) (PS/PVME) blends was induced and controlled by irradiation with linearly polarized light. The PS component was made photosensitive by chemically labeled with either anthracene or trans‐stilbene. The former was used to crosslink the PS component whereas the latter induces phase separation by changing polymer segmental volumes. The phase separation and reaction kinetics were observed and discussed in terms of mode‐selection process.  相似文献   

6.
Miscibility in blends of three styrene-butadiene-styrene and one styrene-isoprene-styrene triblock copolymers containing 28%, 30%, 48%, and 14% by weight of polystyrene, respectively, with poly(vinyl methyl ether) (PVME) were investigated by FTIR spectroscopy and differential scanning calorimetry (DSC). It was found from the optical clarity and the glass transition temperature behavior that the blends show miscibility for each kind of triblock copolymers below a certain concentration of PVME. The concentration range to show miscibility becomes wider as the polystyrene content and molecular weight of PS segment in the triblock copolymers increase. From the FTIR results, the relative peak intensity of the 1100 cm-1 region due to COCH3 band of PVME and peak position of 698 cm-1 region due to phenyl ring are sensitive to the miscibility of SBS(SIS)/PVME blends. The results show that the miscibility in SBS(SIS)/PVME blends is greatly affected by the composition of the copolymers and the polystyrene content in the triblock copolymers. Molecular weights of polystyrene segments have also affected the miscibility of the blends. ©1995 John Wiley & Sons, Inc.  相似文献   

7.
Fourier-transform infrared (FTIR) studies of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blends are presented. Both compatible (one-phase) and phase-separated blends were studied. In the case of compatible PS/PVME blends, there is strong evidence for molecular interactions. The interaction spectrum was obtained by digital subtraction techniques. In contrast, no interaction is detected for the phase-separated blends. In view of these results, molecular interactions must play a role in the compatibility of the two polymers. The merits of factor analysis and least-squares fit methods, as pertaining to our data, are also discussed.  相似文献   

8.
Fourier transform infrared (FTIR) studies of polystyrene (PS)/poly(vinyl methyl ether) (PVME) miscible blends as a function of temperature are presented. Below the lower critical solution temperature (LCST) little change is observed in the interaction spectrum obtained via digital subtraction techniques. Once above the LCST, the magnitude of the interaction spectrum decreases as a result of the phase separation process. Comparison of the behavior of the ether C? O stretching band in the reference PVME and in the blends has yielded a lower limit estimate for the interaction energy of about 0.15 kcal/mol.  相似文献   

9.
The effect of simple shear flow on the phase behavior and morphology was investigated for both polystyrene/poly(vinyl methyl ether) (PS/PVME) and poly(methyl methacrylate)/poly(styrene‐co‐acrylonitrile) (PMMA /SAN‐29.5) blends, which have LCST (lower critical solution temperature)‐type phase diagram. The measurements were carried out using a special shear apparatus of two parallel glass plates type. The PS/PVME blends showed shear‐induced demixing and shear‐induced mixing at low and high shear rate values, respectively. In addition, the rotation speed and the sample thickness were found to have a pronounced effect on the phase behavior under shear flow. On the‐other hand, PMMA/SAN blend showed only shear‐induced mixing and the magnitudes of the elevation of the cloud points were found to be composition and molecular weight dependent. The morphology of the PMMA/SAN=75/25 blend indicated that shear‐induced mixing occurred at a critical shear rate value, below which the two phases were highly oriented and elongated in the flow direction.  相似文献   

10.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   

11.
The influence of nanosilica on the concentration fluctuation of polystyrene/poly (vinyl methyl ether) (PS/PVME) mixtures was investigated during phase separation. The amplitude of concentration fluctuation was quantified by dielectric spectrums based on the idea of Lodge–Mcleish model and the linearized Cahn–Hilliard theory could describe the amplitude evolution of concentration fluctuation at the early stage of phase separation. Hydrophilic nanosilica A200 dispersed in PVME‐rich phase behaved an obvious inhibition effect on the concentration fluctuation of blend matrix, while hydrophobic nanosilica R974 dispersed in PS‐rich phase had little effect on the concentration fluctuation. The kinetics and amplitude evolution of concentration fluctuation during phase separation for PS/PVME/A200 nanocomposites were remarkably restrained due to the surface adsorption of PVME on A200. As the segmental dynamics of PVME and PS in homogeneous matrix was hardly influenced by A200 and R974, the enhanced miscibility and the significantly constrained flow relaxation of PVME chains might contribute to the retarded concentration fluctuation of PS/PVME/A200 nanocomposites. While the weak interaction between R974 and components of blend matrix and little effect of R974 on the molecular dynamics of PS chains may result in the weak retardation of concentration fluctuation for blend matrix. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1337–1349  相似文献   

12.
Dielectric permittivities and loss tangents of 10 and 30% poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)–polystyrene (PS) blends and 10 and 25% poly(vinyl methyl ether) (PVME)–polystyrene blends have been measured from 80 to 360 K at 1 and 10 kHz. The PPO-PS blends have two secondary relaxations below Tg and the PVME-PS blends have three regions. All blends have a β process which appears near 290 K, is independent of PPO or PVME concentration, and is associated with the local modes of motions of PS chains. It is suggested that the β process of PS allows a dipolar reorientation of the PPO or PS chain segments by creating more favorable surroundings for the motions of the latter. The effect of physical aging in the PPO-PS blend is substantial but the “memory effect” is significantly less. This is due to the lower contribution to tanδ from the β process of the blend.  相似文献   

13.
This paper reports the first measurements of macromolecular segmental relaxation times by phosphorescence depolarization. Steady-state phosphorescence polarization experiments were performed on samples of poly(methyl acrylate) incorporating 0.5 wt % copolymerized acenaphthylene or 1-vinyl naphthalene as phosphorescent probes over the temperature range 77 to 310°K. Depolarization of phosphorescence occurs with the onset of segmental motion of the polymer at ca. 278°K. Motion of either probe is characterized by an activation energy of 195 (±5) kJ mole?1, which is in fair agreement with the mean value of 230 kJ mole?1 estimated for the segmental relaxation of poly(methyl acrylate) by dielectric and mechanical relaxation techniques. Transient depolarization measurements confirm the absence of probe motion below the glass transition temperature. Phosphorescence intensity and triplet state lifetime data are capable of detection of a second transition in the polymer in accord with observations using more conventional techniques.  相似文献   

14.
Quasielastic neutron scattering was utilized to investigate the influence of confinement on polymer dynamics. Poly(methyl phenyl siloxane) chains were studied in the bulk as well as severely confined within the approximately 1-2 nm interlayer spacing of intercalated polymer/layered organosilicate nanohybrids. The temperature dependence of the energy resolved elastic scattering measurements for the homopolymer and the nanocomposites exhibit two distinct relaxation steps: one due to the methyl group rotation and one that corresponds to the phenyl ring flip and the segmental motion. Quasielastic incoherent measurements show that the very local process of methyl rotation is insensitive to the polymer glass transition temperature and exhibits a wave-vector independent relaxation time and a low activation energy, whereas it is not affected at all by the confinement. At temperatures just above the calorimetric glass transition temperature, the observed motion is the phenyl ring motion, whereas the segmental motion is clearly identified for temperatures about 60 K higher than the glass transition temperature. For the nanohybrid, the segmental motion is found to be strongly coupled to the motion of the surfactant chains for temperatures above the calorimetric glass transition temperature of the bulk polymer. However, the mean square displacement data show that the segmental motion in confinement is faster than that of the bulk polymer even after the contribution of the surfactant chains is taken into consideration.  相似文献   

15.
嵌段高聚物、均聚物共混体系相容性是近年来研究的热点。本工作以光学显微镜、DSC、FT-IR为手段,研究了三嵌段高聚物苯乙烯-丁二烯-苯乙烯(SBS);SBS-48、SBS-30,SBS-28与聚乙烯基甲基醚共混体系的相容性。DSC结果表明,随SBS中PS含量的升高,体系相容性变好,PS段分子量增大,也有助于体系相容。FT-IR结果表明PVME中COCH_3在1100cm~(-1)附近呈现的双峰的相对强度对体系的相容性十分敏感,而由于苯环C—H振动产生的698cm~(-1)峰位却不象PS/PVME体系那样随相容性的改变而有显著的改变。总而言之,嵌段高聚物SBS/均聚物PVME共混体系中,体系的相容性依赖于嵌段高聚物在体系中的组份含量及嵌段高聚物中PS的重量百分含量,PS段分子量的大小对体系相容性也有影响。  相似文献   

16.
The capillary column inverse gas chromatography technique was used to determine diffusivity and solubility data for several solvents in polymer blends composed of polystyrene and poly(vinyl methyl ether) (PVME). Diffusivity behaved as expected, increasing as the concentration of PVME increased in the blend. Knowing only the free‐volume parameters for the pure polymers, the free‐volume theory was successfully applied to predict the dependence of the diffusion coefficients on the blend composition. Transport in blends above the glass transition temperature is controlled by free volume, and the effect of concentration fluctuations is minimal at the temperatures studied. Experimental data show an increase in the partition coefficient of some solvents in the blends with respect to the pure polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2071–2082, 2007  相似文献   

17.
It is suggested that the non-locality of the entropy part of the interaction parameter in partially miscible blends can be measured directly by scattering experiments. The structure factor computed in the random phase approximation is compared with experiments on weakly crosslinked polystyrene (PS) polyvinylmethylether (PVME) blends. These polymers have significantly different monomer units to form ‘smooth’ (PVME) and ‘rough’ (PS) polymers. An excess scattering is observed and related to the non-locality. It is further shown that these effects are significant near the glass transition of the blend. In particular, the influence of the non-local mixing entropy on the single chain behaviour close to the onset of the microphase separation is studied quantitatively.  相似文献   

18.
The oxidation of polystyrene (PS), poly(vinyl methyl ether) (PVME), and their mixtures has been studied by the chemiluminescence method. It was found that luminescence versus temperature curves had sharp inflections that shifted to higher temperatures with increasing PS content of the blends. A linear relationship was obtained between inflection temperatures and onsets of oxidation exotherms as measured by calorimetry. The inflection points for the mixtures also correlated linearly with the temperatures of thermally induced phase separation  相似文献   

19.
Molecular dynamics is often studied by broad band dielectric spectroscopy (BDS) because of the wide dynamic range available and the large number of processes resulting in electrical dipole fluctuations and with that in a dielectrically detectable relaxation process. Calorimetry on the other hand is an effective analytical tool to characterize phase and glass transitions by its signatures in heat capacity. In the linear response scheme, heat capacity is considered as entropy compliance. Consequently, only processes significantly contributing to entropy fluctuations appear in calorimetric curves. The glass relaxation is a prominent example for such a process. Here, we present complex heat capacity at the dynamic glass transition (segmental relaxation) of polystyrene (PS) and poly(methyl methacrylate) (PMMA) in a dynamic range of 11 orders of magnitude, which is comparable to BDS. As one of the results, we determined the characteristic length scale of the corresponding fluctuations. The dynamic glass transition measured by calorimetry is finally compared to the cooling rate dependence of fictive temperature and BDS data. For PS, dielectric and calorimetric data are similar but for PMMA with its very strong secondary relaxation process some peculiarities are observed.  相似文献   

20.
研究了玻璃基板作用下极性高聚物为低组分的共混物薄膜在退火条件下相形态的发展过程 .选用聚苯乙烯 (PS) 聚甲基丙烯酸甲酯 (PMMA)与聚苯乙烯 (PS) 聚ε 己内酯 (PCL)两个体系 ,在玻璃基板上Spin Coating成膜后退火 .由于共混物薄膜中极性相对较大的高聚物组分 (PMMA和PCL)相对于极性较小的PS组分对玻璃基板具有更好的润湿性 ,所以在上述的两个共混薄膜体系中其相形态分别显示PMMA和PCL在低组分比例下最终发展成为连续相 .利用扫描电镜以及元素分析很好地验证了以上的结论 ,并且对其机理进行了解释 .此外 ,改变PS的分子量与PCL共混 ,研究了组分粘度对薄膜相形态发展的影响 .结果表明 ,PS组分粘度越大 ,共混物薄膜相结构发展速度越慢  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号