首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of copolymer configuration on the phase behavior of various ternary polymer blends containing a crystallizable polyester, a noncrystallizable polyether, and an acrylic random copolymer of different chain configuration was investigated. In these ternary blends, the acrylic random copolymer is typically added to control rheological properties at elevated temperatures. In fact, the acrylic random copolymers composed of various compositions of MMA and nBMA were found to have different miscibility with polyester as well as polyether, leading to substantially different phase behavior of ternary blends. Remarkable temperature dependence was also found. The mean-field Flory-Huggins theory for the free energy of mixing, extended to ternary polymer blends, was adopted for predicting phase diagrams where the exact spinodal and binodal boundaries could be calculated. Phase diagrams of ternary blends, predicted by the Flory-Huggins formulations and related calculations, were in good agreement with experimental phase diagrams. The differences observed in the rheological processes of various ternary blends with different acrylic copolymers were directly related to changes in miscibility, associated phase behavior, and chain configuration.  相似文献   

2.
The battery separator plays a key role in determining the capacity of the battery. Since separator performance mainly depends on the pore size of membrane, development of a technique for the fabrication of the membrane having controlled pore size is essential in producing a highly functional battery separator. In this study, microporous membranes having the desired pore size were produced via thermally‐induced phase separation (TIPS) process. Control of the phase boundaries of polymer‐diluent blends is the main concern in manipulating pore size in TIPS process, because pore size mainly depends on the temperature gap between phase separation temperature of the blend and the crystallization temperature of polymer. Microporous membranes having controlled pore size were produced from polyethylene (PE)/dioctyl phthalate (DOP) blends, PE/isoparaffin blends, and polymer/diluent‐mixture ternary blends, that is, PE/(DOP/isoparaffin) blends. PE/DOP binary blends and PE/(DOP/isoparaffin) ternary blends exhibited typical upper critical solution temperature (UCST) type phase behavior, while PE formed a homogeneous mixture with isoparaffin above the crystallization temperature of PE. When the mixing ratio of polymer and diluent‐mixture was fixed, the phase separation temperature of PE/diluent‐mixture blend first increased with increasing DOP content in the diluent‐mixture, went through a maximum centered at about 80 wt % DOP and then decreased. Furthermore, the phase separation temperatures of the PE/diluent‐mixture blends were always higher than that of the PE/DOP blend when diluent‐mixture contained more than or equal to 20 wt % of DOP. Average pore size of microporous membrane prepared from PE/DOP blend and that prepared from PE/isoparaffin blend were 0.17 and 0.07 μm, respectively. However, average pore size of microporous membrane prepared from ternary blends was varied from 0.07 to 0.5 μm by controlling diluent mixing ratio. To understand the phase behavior of ternary blend, phase instability of the ternary mixture was also explored. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2025–2034, 2006  相似文献   

3.
Dynamic clustering associated with self-assembly in many complex fluids can qualitatively alter the shape of phase boundaries and produce large changes in the scale of critical fluctuations that are difficult to comprehend within the existing framework of theories of critical phenomena for nonassociating fluids. In order to elucidate the scattering and critical properties of associating fluids, we consider several models of equilibrium polymerization that describe widely occurring types of associating fluids at equilibrium and that exhibit the well defined cluster geometry of linear polymer chains. Specifically, a Flory-Huggins-type lattice theory is used, in conjunction with the random phase approximation, to compute the correlation length amplitude xi(o) and the Ginzburg number Gi corresponding, respectively, to the scale of composition fluctuations and to a parameter characterizing the temperature range over which Ising critical behavior is exhibited. Our calculations indicate that upon increasing the interparticle association energy, the polymer chains become increasingly long in the vicinity of the critical point, leading naturally to a more asymmetric phase boundary. This increase in the average degree of polymerization implies, in turn, a larger xi(o) and a drastically reduced width of the critical region (as measured by Gi). We thus obtain insight into the common appearance of asymmetric phase boundaries in a wide range of "complex" fluids and into the observation of apparent mean field critical behavior even rather close to the critical point.  相似文献   

4.
We tested forward recoil spectrometry (FRES) as a method to determine miscibility by measuring coexistence compositions in binary polymer blends. In this study, equilibrium phase compositions were determined for a compositionally symmetric poly(styrene‐ran‐methyl methacrylate) random copolymer (S0.49r‐MMA) and two homopolymers, deuterated polystyrene (dPS) and deuterated poly(methyl methacrylate) (dPMMA). Sample preparation, film dewetting, and beam damage were addressed, and the results for these polymer blends were in good agreement with those obtained through other experimental techniques. Deuteration had a strong effect on the miscibility of the dPS/S0.49r‐MMA and dPMMA/S0.49r‐MMA blends, to the extent that the asymmetric miscibility observed separately for the PS/S0.49r‐MMA and PMMA/S0.49r‐MMA blends was not found. Although this deuteration effect may limit the applicability of FRES for some polymer systems, the accuracy with which phase compositions can be determined with FRES makes it an attractive alternative to other less quantitative methods for investigating blend miscibility. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1547–1552, 2000  相似文献   

5.
The pressure dependence of liquid-liquid equilibria in weakly interacting binary macromolecular systems (homopolymer solutions and blends) will be discussed. The common origin of the separate high-temperature/low-temperature and high-pressure/low-pressure branches of demixing curves will be demonstrated by extending the study into the region of metastable liquid states including the undercooled, overheated and stretched states (i.e. states at negative pressures). The seemingly different response of the UCST-branch of solutions and blends when pressurized (pressure induced mixing for most polymer solutions, pressure induced demixing for most blends) will be explained in terms of the location of a hypercritical point found either at positive (most solutions) or negative pressure (most blends). Further, it is shown that the pressure dependence of demixing of homopolymer solutions and blends may be described using a ‘master-curve’ which, however, is sometimes partly masked by degradation or by vapour-liquid and/or solid-liquid phase transitions. Experimental results demonstrating the extension of liquid-liquid phase boundary curves into the metastable regions will be presented, and the existence of solubility islands in the vicinity of the hypercritical points discussed.  相似文献   

6.
The most common way to influence the liquid-liquid phase behaviour in partially miscible (co-)polymer blends is changing the blending temperature. Since most extruders can handle pressures, up to 300 bar, pressure may also be used to influence the miscibility of polymers during blending. We have developed equipment and an experimental procedure to study the pressure dependence of the liquid-liquid demixing behaviour of high-viscous polymer blends under equilibrium conditions. Small amounts (1–4 grams) of specially made polymers are blended in the ‘DSM MINI EXTRUDER’. After a chosen mixing time, a small portion of the blend is injected into a small capillary tube and kept at the blending temperature. The phase behaviour of the blends as a function of temperature and pressure is studied via laser light scattering (at a scattering angle of 90°) in a specially made 400 bar/250°C window autoclave, where the capillary cell is placed in a high temperature grade silicon oil.  相似文献   

7.
剪切流动对聚合物共混物相行为影响的研究进展   总被引:6,自引:0,他引:6  
剪切流动对聚合物共混物相行为影响的研究进展;综述  相似文献   

8.
Rechargeable battery separators containing controlled pores were fabricated via the thermally-induced phase separation (TIPS) process. Based on the idea that pores could be manipulated by controlling the liquid–liquid phase separation temperature in the TIPS process, phase boundaries of the polymer–diluent systems were controlled by using diluent mixtures. Phase behaviors of the polymer/diluent/diluent ternary blends consisting of polyethylene (PE) as polymer, and soybean oil (SBO) and dioctyl phthalate (DOP) as diluents were explored. PE/SBO and PE/DOP binary blends, and PE/SOB/DOP ternary blends exhibited typical upper critical solution temperature (UCST) type phase behaviors, and the phase separation temperatures of the PE/SBO blends were higher than those of the PE/DOP blends. When the mixing ratio of the polymer and diluent-mixture was fixed, the phase separation temperature of the PE/SBO/DOP blend initially increased with increasing SBO content in the diluent-mixture passing through a maximum centered at about 80 wt% SBO and decreased beyond this point. Furthermore, the phase separation temperature of the PE/diluent-mixture blend was always higher than that of the PE/SBO blend when the diluent-mixture contained more than or equal to 50 wt% SBO. To understand the observed phase behavior of the blends, thermodynamic analyses based on the lattice-fluid theory were performed. Larger pore membranes were fabricated from the blend when higher phase separation temperatures of the blend were exhibited.  相似文献   

9.
A combined analysis of Pressure-Volume-Temperature (PVT), Dynamic Mechanical Thermal Analysis (DMTA) and oscillatory flow measurements for blends of a polypropylene (PP) with a commercial liquid crystalline polymer (Rodrun LC3000) is presented. This analysis allows the determination of the pressure-viscosity coefficient b = ∂lnη0/∂P. This coefficient depends on the Rodrun LC3000 content, increasing with it and is of the same order of magnitude as values reported for several commercial polymers showing a similar dependence of the viscosity on pressure. The analysis of the pressure dependence of Tg (related to b) leads to the conclusion that the number of segments involved in the glass transition of PP increases with the Rodrun LC3000 content, thus demonstrating that the polymers are not totally immiscible. As far as the authors know, this is the first time that the dependence of the viscosity on the pressure has been reported for thermoplastic/liquid crystalline polymer blends.  相似文献   

10.
Controlled surface activity and reactivity of new carbon‐chain functional surface‐active oligoperoxides (FSAP) and derived metal complexes (OMC) with side and end di‐tertiary and tert‐alkyl (aryl) peroxidic, respectively, and other active functional groups cause the possibility of their tailored utilization as emulsifiers, surface‐active initiators and modifiers of the phase boundaries of liquid, solid and mixed phases in different colloidal systems in a wide temperature range. New materials can be developed such as water and hydrocarbon polymer dispersions, artificial water dispersions of unsaturated polyesters and alkyd resins, polymer/polymeric blends, active glass and carbon fibers, dispersed fillers, reinfourced and filled polymer composites with the definite special properties. Methods for the obtaining and the application of these materials are described.  相似文献   

11.
Computer simulation studies on the miscibility behavior and single chain properties in binary polymer blends are reviewed. We consider blends of various architectures in order to identify important architectural parameters on a coarse grained level and study their qualitative consequences for the miscibility behavior. The phase diagram, the relation between the exchange chemical potential and the composition, and the intermolecular pair correlation functions for symmetric blends of linear chains, blends of cyclic polymers, blends with an asymmetry in cohesive energies, blends with different chain lengths, blends with distinct monomer shapes, and blends with a stiffness disparity between the components are discussed. For strictly symmetric blends the Flory‐Huggins theory becomes quantitatively correct in the long chain length limit, when the χ parameter is identified via the intermolecular pair correlation function. For small chain lengths composition fluctuations are important. They manifest themselves in 3D Ising behavior at the critical point and an upward parabolic curvature of the χ parameter from small‐angle neutron scattering close to the critical point. The ratio between the mean field estimate and the true critical temperature decreases like √χ/(ρb3) for long chain lengths. The chain conformations in the minority phase of a symmetric blend shrink as to reduce the number of energeticaly unfavorable interactions. Scaling arguments, detailed self‐consistent field calculations and Monte Carlo simulations of chains with up to 512 effective segments agree that the conformational changes decrease around the critical point like 1/√N. Other mechanisms for a composition dependence of the single chain conformations in asymmetric blends are discussed. If the constituents of the blends have non‐additive monomer shapes, one has a large positive chain‐length‐independent entropic contribution to the χ parameter. In this case the blend phase separates upon heating at a lower critical solution temperature. Upon increasing the chain length the critical temperature approaches a finite value from above. For blends with a stiffness disparity an entropic contribution of the χ parameter of the order 10–3 is measured with high accuracy. Also the enthalpic contribution increases, because a back folding of the stiffer component is suppressed and the stiffer chains possess more intermolecular contacts. Two aspects of the single chain dynamics in blends are discussed: (a) The dynamics of short non‐entangled chains in a binary blend are studied via dynamic Monte Carlo simulations. There is hardly any coupling between the chain dynamics and the thermodynamic state of the mixture. Above the critical temperatures both the translational diffusion and the relaxation of the chain conformations are independent of the temperature. (b) Irreversible reactions of a small fraction of reactive polymers at a strongly segregated interface in a symmetric binary polymer blend are investigated. End‐functionalized homopolymers of different species react at the interface instantaneously and irreversibly to form diblock copolymers. The initial reaction rate for small reactant concentrations is time dependent and larger than expected from theory. At later times there is a depletion of the reactive chains at the interface and the reaction is determined by the flux of the chains to the interface. Pertinent off‐lattice simulations and analytical theories are briefly discussed.  相似文献   

12.
The toughness of high‐density polyethylene (HDPE)/glass‐bead blends containing various glass‐bead contents as a function of temperature was studied. The toughness of the blends was determined from the notch Izod impact test. A sharp brittle–ductile transition was observed in impact strength–interparticle distance (ID) curves at various temperatures. The brittle–ductile transition of HDPE/glass‐bead blends occurred either with reduced ID or with increased temperature. The results indicated that the brittle–ductile‐transition temperature dropped markedly with increasing glass‐bead content. Moreover, the correlation between the critical interparticle distance (IDc) and temperature was obtained. Similar to the IDc of polymer blends with elastomers, the IDc nonlinearly increased with increasing temperature. However, this was the first observation of the variation of the IDc with temperature for polymer blends with rigid particles. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1855–1859, 2001  相似文献   

13.
The phase behavior of mixtures of polymers and nematic liquid crystals (LC) is investigated. Two types of systems are examined. The first one deals with blends in which the polymer is made of linear chains. In this case, a systematic study of the effects of various parameters on the phase diagrams is performed. In particular, it is shown how increasing the polymer size and/or the LC molecule size increases the miscibility gap of the mixture. It also reduces the region where a single nematic phase is observed in the presence of a tiny amount of polymer. Likewise, the relative effects of the isotropic and the nematic interaction parameters on the phase diagrams are examined. The second part of this investigation deals with blends involving crosslinked polymers. Here, substantial differences are observed as compared to the case where the polymer components are made of linear chains. These differences are illustrated by showing the phase diagrams in similar conditions for both blends. Unlike the case of a linear polymer matrix, it is observed that the single nematic phase and the nematic-isotropic spinodal branches are absent from the phase diagram of crosslinked polymers. This results into significant distortions of the phase diagram. In order to highlight all these effects, examples representing hypothetical blends are considered. These examples are chosen for illustration of the results in which the choice of numerical parameters is made consistently with the existing values in the literature which makes comparison with published data possible.  相似文献   

14.
Electrical conductivity of carbon black (CB) filled polymer blends which are incompatible with each other was studied as a function of the polymer's blend ratio. Transmission electron microscope (TEM) analysis shows that CB distributes unevenly in each component of a polymer blend. TEM photographs of phase structure of solvent extracted HDPE/PMMA blend and solvent extraction experiments of PMMA/PP blend detect the blend ratio at which the structural continuity of filler rich phase is formed. The electrical conductivity of polymer blends is found to be determined by two factors. One is the concentration of CB in the filler rich phase and the other is the structural continuity of this phase. This double percolation affects the conductivity of conductive particle filled polymer blends.  相似文献   

15.
In this study, ethylene/styrene interpolymer (ESI) was used as compatibilizer for the blends of polystyrene (PS) and low‐density polyethylene (LDPE). The mechanical properties including impact, tensile properties, and morphology of the blends were investigated by means of uniaxial tension, instrumented falling‐weight impact measurements, and scanning electron microscopy. Impact measurements indicated that the impact strength of the blends increases slowly with LDPE content up to 40 wt %; thereafter, it increases sharply with increasing LDPE content. The impact energy of the LDPE‐rich blends exceeded that of pure LDPE, implying that the LDPE polymer can be further toughened by the incorporation of brittle PS minor phase in the presence of ESI. Tensile tests showed that the yield strength of the PS/LDPE/ESI blends decreases considerably with increasing LDPE content. However, the elongation at break of the blends tended to increase significantly with increasing LDPE content. The compatibilization efficiency of ESI and polystyrene‐hydrogenated butadiene‐polystyrene triblock copolymers (SEBS) for PS/LDPE 50/50 was further compared. Mechanical properties show that ESI is more effective to achieve a combination of LDPE toughness and PS rigidity than SEBS. The correlation between the impact property and morphology of the ESI‐compatibilized PS/LDPE blends is discussed. The excellent tensile ductility of the LDPE‐rich blends resulted from shield yielding of the matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2136–2146, 2007  相似文献   

16.
Poly(vinyl chloride)/Poly(methyl methacrylate) — PVC/PMMA — blends were investigated by comparative p-V-T and differential scanning calorimetry (DSC) measurements. The study was concentrated on the glass transition range of the blends, and it was found that the blends are characterized by a single glass transition temperature suggesting miscibility of the blend components. It is shown that the glass temperature of the blends increases with both increasing heating rate and pressure. In parallel hereto one observes a decrease in the volume expansion coefficients, which is more accentuated for the polymeric melts than for the polymeric glasses. The dependence of the glass temperature on the composition of the polymer blends shows a sigmoidal behaviour which is due to the fact that positive deviations of the glass temperature from values predicted by additivity rules are observed in the high PVC concentration range, whereas in the high PMMA range negative deviations occur. This suggests a denser packing of the blends and thus a stronger interaction between the blend components in the high PVC concentration range. These packing differences increase with increasing pressure and decreasing heating rate and are generally more accentuated for the glass temperatures evaluated from p-V-T measurements.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
The effects of process conditions and molecular structure of polymer and diluent on the droplet size of membranes formed by thermally induced phase separatiom (TIPS) process were examined. The observed upper critical solution temperature–type phase boundaries of nylon‐12 blended with poly(ethylene glycol) (PEG) and nylon 12 diluted with poly(ethylene glycol) dimethyl ether (PEGDE) and their interaction energy densities calculated using the Flory–Huggins theory suggest that the nylon‐12/PEGDE blends are less stable than the nylon‐12–PEG blends. Infrared spectra confirmed that the difference in phase stability might come from specific interactions of the hydroxyl terminal groups of PEG with the amide groups from nylon‐12, which are not be feasible in the nylon‐12–PEGDE blends. The phase stability of diluent PEG blended with various nylons that are different in the number of methyl groups in the repeat unit was ranked in the order of: nylon‐6–PEG blend < nylon‐12–PEG blend < nylon‐11–PEG blend. We also noted that the phase‐separated droplets grew by both coalescence and the Oswald ripening process after the onset of phase separation. As a result, the cubic exponent of average droplet radius (R3) plotted against time satisfied the linear relationship. As the blends became less stable, the droplet growth rate increased and larger equilibrium droplets formed at a constant quenching depth. The TIPS membranes with desired pore structure could be prepared by controlling the molecular structure of components as well as by varying processing conditions such as quenching depth and annealing time. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3042–3052, 2000  相似文献   

18.
Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond fluctuation model, where differences in the interaction energies between nonbonded nearest neighbors distinguish the two components of a blend. Simulations employing only local moves and respecting a no bond crossing condition were carried out for blends with a range of compositions, densities, and chain lengths. The blends investigated here have long time dynamics in the crossover region between Rouse and entangled behavior. In order to investigate the scaling of the self-diffusion coefficients, characteristic chain lengths N(c) are calculated from the packing length of the chains. These are combined with a local mobility mu determined from the acceptance rate and the effective bond length to yield characteristic self-diffusion coefficients D(c)=muN(c). We find that the data for both melts and blends collapse onto a common line in a graph of reduced diffusion coefficients DD(c) as a function of reduced chain length NN(c). The composition dependence of dynamic properties is investigated in detail for melts and blends with chains of length N=20 at three different densities. For these blends, we calculate friction coefficients from the local mobilities and consider their composition and pressure dependence. The friction coefficients determined in this way show many of the characteristics observed in experiments on miscible blends.  相似文献   

19.
Blends of poly(propylene carbonate) (PPC) with copolymer poly(styrene‐co‐4‐vinyl phenol) (STVPh) have been studied by electron spin resonance (ESR) spin probe method and Raman spectroscopy. The ESR results indicated that the nitroxide radical existed in a PPC‐rich and an STVPh‐rich micro domain in the blends, corresponding to the fast‐motion and slow‐motion component in the ESR spectra, respectively. And in the temperature dependence composite spectra, the fast‐motion fraction increased with increasing the hydroxyl group content in copolymer STVPh. Moreover, the ESR parameter T5mT, rotational correlation times (τc) and activation energies (Ea) showed similar dependence on the hydroxyl group content as the fast‐motion fraction. It resulted from the enhancement of the hydrogen‐bonding interaction between the hydroxyl groups in STVPh and the carboxyl groups and ether oxygen in PPC. However, the distinct band shift and intensity change among the Raman spectra of pure polymer components and those of the blends were observed. In the carboxyl‐stretching region, the band shifted to lower frequency with increasing the hydroxyl groups. Furthermore, the phase morphologies of the blends were obtained by optical microscopy. All could be concluded that the hydrogen‐bonding interaction between the two components was progressively favorable to the mixing process and was the driving force for the miscibility enhancement in the blends. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The capillary column inverse gas chromatography technique was used to determine diffusivity and solubility data for several solvents in polymer blends composed of polystyrene and poly(vinyl methyl ether) (PVME). Diffusivity behaved as expected, increasing as the concentration of PVME increased in the blend. Knowing only the free‐volume parameters for the pure polymers, the free‐volume theory was successfully applied to predict the dependence of the diffusion coefficients on the blend composition. Transport in blends above the glass transition temperature is controlled by free volume, and the effect of concentration fluctuations is minimal at the temperatures studied. Experimental data show an increase in the partition coefficient of some solvents in the blends with respect to the pure polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2071–2082, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号