首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2‐Dicyclohexyl‐ and 2‐diphenylphosphinophenol, CCHH and PPHH , react with Ni(1,5‐COD)2 to form catalysts for polymerization of ethylene in or copolymerization with α‐olefins. The more P‐basic CCHH/Ni catalyst allows concentration‐dependent incorporation of olefins to give copolymers with isolated side groups and higher molecular weights, whereas the PPHH/Ni catalyst undergoes mainly stabilizing interactions with the olefins and leads to ethylene oligomers with no or marginal olefin incorporation. Pressure–time plots of the batch reactions show that the ethylene conversion is usually slower by catalysis with CCHH/Ni than by PPHH/Ni . The microstructure of the copolymers was determined by 13C NMR spectra, the number of side groups per main chain was estimated by 1H NMR analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 258–266, 2009  相似文献   

2.
3.
Upon activation with diethylaluminium chloride (Et2AlCl), a series of phenyl‐substituted α‐diimine nickel precatalysts conducted 4‐methyl1pentene (4MP) and ethylene (E) (co)polymerizations via controlled chain‐walking to generate branched amorphous polymers with high molecular weight and narrow molecular weight distribution (Mw/Mn < 1.6). The obtained poly(4MP)s were amorphous elastomers with glass transition temperature (Tg) of ?10 ~ ?24 °C, which are higher than that of E‐4MP copolymer ( ? 63.0 °C). At room temperature (25 °C), 4MP polymerization proceeds in a living manner. The microstructures of the produced poly(4MP)s indicated the 2,1 and 1,2insertion followed by chain‐walking, the latter being predominant. The NMR analyses of the polymers showed that the obtained poly(4MP) possessed methyl, isobutyl, 2,4dimethylpentyl and 2methylhexyl groups, while the isobutyl and 2,4dimethylalkyl branches derived from 4MP were observed in the E‐4MP copolymer. The branch structures and the insertiontype of monomer were depended on the polymerization temperature, and the content of methyl branch increased with an increase in the polymerization temperature.  相似文献   

4.
Styrene–divinylbenzene resins were used for the synthesis of different polymer-bound β-diketones, obtained by anchoring the chelating group through either the central or the lateral position. The heterogenized diketone ligand was subsequently reacted with Ni(COD)2 analogously to the corresponding homogeneous catalysts active in α-olefin oligomerization. The heterogenized catalysts showed a good activity only when the central position of the chelate moiety was free. Heterogenization caused a significant change of selectivity: olefin oligomerization was accompanied by the formation of a large amount of polymeric products. This behavior is discussed in terms of steric effects caused by the bulky polymeric ligand. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
A series of α‐keto‐β‐diimine nickel complexes (Ar‐N = C(CH3)‐C(O)‐C(CH3)=N‐Ar)NiBr2; Ar = 2,6‐R‐C6H3‐, R = Me, Et, iPr, and Ar = 2,4,6‐Me3‐C6H3‐) was prepared. All corresponding ligands are unstable even under an inert atmosphere and in a freezer. Stable copper complex intermediates of ligand synthesis and ethyl substituted nickel complex were isolated and characterized by X‐ray. All nickel complexes were used for the polymerization of ethene, propylene, and hex‐1‐ene to investigate their livingness and the extent of chain‐walking. Low‐temperature propene polymerization with less bulky ortho‐substituents was less isospecific than the one with isopropyl derivative. Propene stereoblock copolymers were prepared by iPr derivative combining the polymerization at low temperature to prepare isotactic polypropylene (PP) block and at a higher temperature, supporting chain‐walking, to obtain amorphous regioirregular PP block. Alternatively, a copolymerization of propene with ethene was used for the preparation of amorphous block. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2440–2449  相似文献   

6.
7.
Poly‐α‐olefins ranging from poly‐1‐pentene to poly‐1‐octadecene with narrow polydispersities were synthesized with (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2 and methylaluminoxane at polymerization temperatures (Tp 's) ranging from −15 to 180 °C and were characterized by gel permeation chromatography, NMR spectroscopy, and differential scanning calorimetry. The molar masses of the homopolymers obtained with (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2 were notably higher than those of poly‐α‐olefins synthesized with other zirconium‐based metallocenes under similar conditions. The temperature dependence of the molar mass distribution of the poly‐α‐olefins can be described by a common exponential decay function regardless of the investigated monomer. At Tp 's ranging from 20 to 100 °C, moderate isotacticity prevailed, but outside this temperature range, the polymers were less stereoregular. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2333–2339, 2000  相似文献   

8.
9.
10.
11.
We report a Ni‐catalyzed regioselective α‐carbonylalkylarylation of vinylarenes with α‐halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α‐halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ‐diarylcarbonyl derivatives with α‐secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.  相似文献   

12.
13.
Two neutral salicylaldiminato methyl pyridine nickel(II) complexes were synthesized and evaluated for ethylene polymerization. Each catalyst bears a methoxy group in the 3‐position and a halogen atom in the 5‐position of the salicyl ligand, chlorine in case of catalyst 3a and bromine in 3b . Molecular structures of the catalysts were obtained by X‐ray crystallography. The resulting polymerization activities, for example, indicated by a maximum turnover frequency of 4,870 mol ethylene/(mol Ni × h) for 1‐h runs obtained with 3a , were higher than those of similar catalysts at comparable conditions reported in the literature. Catalyst 3a was slightly more active than catalyst 3b . The polymers are branched as measured by 1H NMR and 13C NMR. This was also reflected in the melting temperatures between 76 and 113 °C obtained by differential scanning calorimetry. By using gel permeation chromatography measurements, it was determined that the Mw of the polymers ranges between about 5,400 and 21,600 g/mol. In particular, the effect of the polymerization temperature on the catalyst activity, degree of branching, and molecular weight properties has been described. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A series of copolymers containing ε‐caprolactone (CL) and 4‐methyl‐ε‐caprolactone (MeCL) were synthesized by ring‐opening polymerization (ROP) using Tin(II) bis(2‐ethylhexanoate)(Sn(Oct)2) or Novozym 435 as catalyst. The molecular structure and weight of copolymers were determined by nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC), respectively. Our kinetic study showed that the monomer reactivity ratios for CL (r1) and MeCL (r2) using Sn(Oct)2 as catalyst were estimated to be near unity and r1 × r2 = 1, indicating the random distribution of the monomers in the final copolymer. The results of DSC and XRD consistently indicated that the copolymers were inclined to be amorphous with the increasing of MeCL fraction. Microspheres were prepared from copolymers and characterized by SEM. The preliminary degradability and biocompatibility studies on these copolymers were also assessed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
16.
Nickel(II) and palladium(II) complexes of monodentate aminophosphine ligands were prepared and characterized. In ethylene oligomerization and subsequent Friedel–Crafts alkylation of toluene, the Ni(II) complexes Ni‐1 and Ni‐2 were activated with aluminium co‐catalysts and generated tandem catalysts with high activities (up to 1.1 × 106 g (mol Ni)?1 h?1) which are comparable with those of previously reported bidentate Ni(II) catalysts. The Pd(II) precatalyst Pd‐1 showed high activities (up to 2.0 × 105 g (mol Pd)?1 h?1) in the polymerization of norbornene.  相似文献   

17.
18.
The catalytic properties of a set of ansa‐complexes (R‐Ph)2C(Cp)(Ind)MCl2 [R = tBu, M = Ti ( 3 ), Zr ( 4 ) or Hf ( 5 ); R = MeO, M = Zr ( 6 ), Hf ( 7 )] in α‐olefin homopolymerization and ethylene/1‐hexene copolymerization were explored in the presence of MAO (methylaluminoxane). Complex 4 with steric bulk tBu group on phenyl exhibited remarkable catalytic activity for ethylene polymerization. It was 1.6‐fold more active than complex 11 [Ph2C(Cp)(Ind)ZrCl2] at 11 atm ethylene pressure and was 4.8‐fold more active at 1 atm pressure. The introduction of bulk substituent tBu into phenyl groups not only increased the catalytic activity greatly but also enhanced the content of 1‐hexene in ethylene/1‐hexene copolymerization. The highest 1‐hexene incorporation was 25.4%. In addition, 4 was also active for propylene and 1‐hexene homopolymerization, respectively, and low isotactic polypropylene (mmmm = 11.3%) and isotactic polyhexene (mmmm = 31.6%) were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Styrene–norbornene (S‐N) copolymerizations were carried out using β‐diketiminato nickel complexes CH{C(CF3)NAr}2NiBr (Ar = 2,6‐iPr2C6H3, 1 ; Ar = 2,6‐Me2C6H3, 2 ) in the presence of methylaluminoxane. The influence of the comonomer feed content and polymerization temperature on the conversion and composition of the copolymers with the catalytic system was investigated. An increase in the feed ratio of S/N led to an increase in the incorporated styrene content of the resulting copolymer. NMR characterization of the copolymers generated with the catalytic systems showed that the random S‐N copolymers are produced. Differential scanning calorimetric determination of the copolymers shows higher Tg values than polystyrene, and gel permeation chromatographic measurements have shown that the copolymers possess rather narrow molecular weight distributions, suggesting that the copolymerization take place at a single active site. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号