首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

2.
The Ziegler–Natta system Cp*TiMe3/B(C6F5)3 catalyzed the copolymerization of ethylene and 1‐hexene in toluene into materials that were characterized by 1H and 13C{1H} NMR spectroscopy, differential scanning calorimetry, and gel permeation chromatography. The effects of temperature and ethylene/1‐hexene and olefin/catalyst ratios on catalyst activities and copolymer molecular weights and molecular weight distributions were studied; the ethylene proportions varied from less than 5% to 85% or more. In addition, significant amounts of 1‐hexene were incorporated into the growing polymer chain in a 2,1‐fashion; consequently, conventional 13C NMR analytical methodologies for deducing monomer proportions and dispersions and polymer microstructures, based on a low 1,2‐incorporation of α‐olefin, did not work very well. A soluble (in toluene at ambient temperature) but very high molecular weight (weight‐average molecular weight ∼ 8 × 105, weight‐average molecular weight/number‐average molecular weight = 1.8) rubbery copolymer that formed at −78 °C exhibited a predominantly alternating microstructure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3966–3976, 2000  相似文献   

3.
Two C–C bridged Ni(II) complexes bearing β‐keto‐9‐fluorenyliminato ligands with electron‐withdrawing groups (─CF3), Ni{PhC(O)CHC[N(9‐fluorenyl)]CF2}2 (Ni 1 ) and Ni{CF3C(O)CHC[N(9‐fluorenyl)]Ph}2 (Ni 2 ), were synthesized by metal coordination reaction and different in situ bonding mechanisms. The C–C bridged bonds of Ni 1 were formed by in situ intramolecular trifluoromethyl and 9‐fluorenyl carbon–carbon cross‐coupling reaction and those of Ni 2 were formed by in situ intramolecular 9‐fluorenyl carbon–carbon radical coupling reaction mechanism. The obtained complexes were characterized using 1H NMR spectroscopy and elemental analyses. The crystal and molecular structures of Ni 1 and Ni 2 with C–C bridged configuration were determined using X‐ray diffraction. Ni 1 and Ni 2 were used as catalysts for norbornene (NB) polymerization after activation with B(C6F5)3 and the catalytic activities reached 106 gpolymer molNi?1 h?1. The copolymerization of NB and styrene catalyzed by the Ni 1 /B(C6F5)3 system showed high activity (105 gpolymer molNi?1 h?1) and the catalytic activities decreased with increasing feed content of styrene. All vinyl‐type copolymers exhibited high molecular weight (104 g mol?1), narrow molecular weight distribution (Mw/Mn = 1.71–2.80), high styrene insertion ratios (11.13–50.81%) and high thermal stability (Td > 380°C) and could be made into thin films with high transparency in the visible region (400–800 nm).  相似文献   

4.
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH = N(C6F5)] [PhN = C(R1)CHC(R2)O]TiCl2 [ 3a : R1 = CF3, R2 = tBu; 3b : R1 = Me, R2 = CF3; 3c : R1 = CF3, R2 = Ph; 3d : R1 = CF3, R2 = C6H4Ph(p ); 3e : R1 = CF3, R2 = C6H4Ph(o ); 3f : R = CF3, R2 = C6H4Cl(p ); 3g : R1 = CF3; R2 = C6H3Cl2(2,5); 3h : R1 = CF3, R2 = C6H4Me(p )] were investigated as catalysts for ethylene (co)polymerization. In the presence of modified methylaluminoxane as a cocatalyst, these complexes showed activities about 50%–1000% and 10%–100% higher than their corresponding bis(β‐enaminoketonato) titanium complexes for ethylene homo‐ and ethylene/1‐hexene copolymerization, respectively. They produced high or moderate molecular weight copolymers with 1‐hexene incorporations about 10%–200% higher than their homoligated counterpart pentafluorinated FI‐Ti complex. Among them, complex 3b displayed the highest activity [2.06 × 106 g/molTi?h], affording copolymers with the highest 1‐hexene incorporations of 34.8 mol% under mild conditions. Moreover, catalyst 3h with electron‐donating group not only exhibited much higher 1‐hexene incorporations (9.0 mol% vs. 3.2 mol%) than pentafluorinated FI‐Ti complex but also generated copolymers with similar narrow molecular weight distributions (M w/M n = 1.20–1.26). When the 1‐hexene concentration in the feed was about 2.0 mol/L and the hexene incorporation of resultant polymer was about 9.0 mol%, a quasi‐living copolymerization behavior could be achieved. 1H and 13C NMR spectroscopic analysis of their resulting copolymers demonstrated the possible copolymerization mechanism, which was related with the chain initiation, monomer insertion style, chain transfer and termination during the polymerization process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2787–2797  相似文献   

5.
Two bis(β‐ketoamino)copper [ArNC(CH3)CHC(CH3)O]2Cu ( 1 , Ar = 2,6‐dimethylphenyl; 2 , Ar = 2,6‐diisopropylphenyl) complexes were synthesized and characterized. Homo‐ and copolymerizations of methyl acrylate (MA) and 1‐hexene with bis(β‐ketoamino)copper(II) complexes activated with methylaluminoxane (MAO) were investigated in detail. MA was polymerized in high conversion (>72%) to produce the syndio‐rich atactic poly(methyl acrylate), but 1‐hexene was not polymerized with copper complexes/MAO. Copolymerizations of MA and 1‐hexene with 1 , 2 /MAO produced acrylate‐enriched copolymers (MA > 80%) with isolated hexenes in the backbone. The calculation of reactivity ratios showed that r(MA) is 8.47 and r(hexene) is near to 0 determined by a Fineman‐Ross method. The polymerization mechanism was discussed, and an insertion‐triggered radical mechanism was also proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1113–1121, 2010  相似文献   

6.
Factors affecting the syntheses of high‐molecular‐weight poly(2,5‐dialkyl‐1,4‐phenylene vinylene) by the acyclic diene metathesis polymerization of 2,5‐dialkyl‐1,4‐divinylbenzenes [alkyl = n‐octyl ( 2 ) and 2‐ethylhexyl ( 3 )] with a molybdenum or ruthenium catalyst were explored. The polymerizations of 2 by Mo(N‐2,6‐Me2C6H3) (CHMe2 Ph)[OCMe(CF3)2]2 at 25 °C was completed with both a high initial monomer concentration and reduced pressure, affording poly(p‐phenylene vinylene)s with low polydispersity index values (number‐average molecular weight = 3.3–3.65 × 103 by gel permeation chromatography vs polystyrene standards, weight‐average molecular weight/number‐average molecular weight = 1.1–1.2), but the polymerization of 3 was not completed under the same conditions. The synthesis of structurally regular (all‐trans), defect‐free, high‐molecular‐weight 2‐ethylhexyl substituted poly(p‐phenylene vinylene)s [poly 3 ; degree of monomer repeating unit (DPn) = ca. 16–70 by 1H NMR] with unimodal molecular weight distributions (number‐average molecular weight = 8.30–36.3 × 103 by gel permeation chromatography, weight‐average molecular weight/number‐average molecular weight = 1.6–2.1) and with defined polymer chain ends (as a vinyl group, ? CH?CH2) was achieved when Ru(CHPh)(Cl)2(IMesH2)(PCy3) or Ru(CH‐2‐OiPr‐C6H4)(Cl)2(IMesH2) [IMesH2 = 1,3‐bis(2,4,6‐trimethylphenyl)‐2‐imidazolidinylidene] was employed as a catalyst at 50 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6166–6177, 2005  相似文献   

7.
Summary: In this communication, we report the first rheological study on the chain‐straightened Ni‐diimine poly(1‐hexene)s and investigate the unique effect of chain straightening on plateau modulus and entanglement molecular weight of this series of polymers. Two Ni‐diimine poly(1‐hexene) samples having different levels of chain straightening were prepared with a chain‐walking Ni‐diimine catalyst, (ArNC(An) C(An)NAr)NiBr2 (An = acenaphthene, Ar = 2,6‐(i‐Pr)2C6H3) at two different temperatures. Rheological analyses show that the chain‐straightened polymers exhibit significantly enhanced plateau modulus and reduced entanglement molecular weight compared to regular poly(1‐hexene)s by metallocene catalysis. Such an effect becomes more pronounced with an increase in the level of chain straightening.

Loss moduli G″(ω) versus reduced angular frequency in a linear, natural logarithm plot for the three polymers at the reference temperature of 100 °C.  相似文献   


8.
Bis(β‐enaminoketonato) vanadium(III) complexes ( 2a–c ) [O(R1)C?C(H)xC(R2)?NC6H5]2VCl(THF) and the corresponding vanadium(IV) complexes ( 3a–c ) [O(R1)C?C(H)xC(R2)? NC6H5]2VO (R1 = ? (CH2)4? , R2 = H, x = 0, a ; R1 = ? C6H5, R2 = H, x = 1, b ; R1 = ? C6H5, R2 = ? C6H5, x = 1, c ) have been synthesized from VCl3(THF)3 and VOCl2(THF)2, respectively, by treating with 2.0 equivalent β‐enaminoketonato ligands in tetrahydrofuran. Structures of 2b and 3a–c were further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–c and 3a–c exhibited high catalytic activities (up to 23.76 kg of PE/mmolV h bar), and afforded polymers with unimodal molecular weight distributions at 70 °C indicating the good thermal stability. The catalytic behaviors were influenced not only by the oxidation state of the catalyst precursors but also by the ligand structures. Complexes 2a–c and 3a–c were also effective catalyst precursors for ethylene/1‐hexene copolymerization. The influence of polymerization parameters such as reaction temperature, Al/V molar ratio and hexene feed concentration on the ethylene/hexene copolymerization behaviors have bee also investigated in detail. In addition, the agents such as AlMe3, AliBu3, MeMgBr, MgCl2, and ZnEt2 were applied to control the molecular weight and molecular weight distribution modal. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3062–3072, 2010  相似文献   

9.
High molecular weight polymers such as poly (α‐olefin)s play a key role as drag‐reducing agents which are commonly used in pipeline industry. Heterogeneous Ziegler–Natta catalyst system of MgCl2.nEtOH/TiCl4/donor was prepared using a spherical MgCl2 support and utilized in synthesis of poly(1‐hexene)s with a viscosity average molecular weight (Mv) up to 3.5 × 103 kDa. The influence of effective parameters including Al/Ti ratio, polymerization temperature, monomer concentration, effect of alkylaluminus type on the productivity, and molecular weight of the products was evaluated. It was suggested that the reactivity of the Al‐R group and the bulkiness of the cocatalyst were correlated to the performance of the Ziegler–Natta catalyst at different polymerization time and temperatures, affecting the catalyst activity and Mv of polymers. Moreover, bulk polymerization method leads to higher viscosity average molecular weights, revealing the remarkable effect of polymerization method on the chain microstructure. Fourier transform infrared, 13C Nuclear magnetic resonance spectra, and DSC thermogram of the prepared polymers confirmed the formation of poly(1‐hexene). The properties of the polymers measured by vortex test showed that these polymers could be used as a drag‐reducing agent. Drag‐reducing behaviors of the polymers exhibited a dependence on the Mv of the obtained polymers that was changed by variation in polymerization parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The organo‐rare‐earth‐metal‐initiated living polymerization of methyl methacrylate (MMA) was first discovered in 1992 with (C5Me5)2LnR (where R is H or Me and Ln is Sm, Yb, Y, or La) as an initiator. These polymerizations provided highly syndiotactic (>96%) poly(methyl methacrylate) (PMMA) with a high number‐average molecular weight (Mn > 1000 × 103) and a very narrow molecular weight distribution [weight‐average molecular weight/number‐average molecular weight (Mw/Mn) < 1.04] quantitatively in a short period. Bridged rare‐earth‐metallocene derivatives were used to perform the block copolymerization of ethylene or 1‐hexene with MMA, methyl acrylate, cyclic carbonate, or ?‐caprolactone in a voluntary ratio. Highly isotactic (97%), monodisperse, high molecular weight (Mn > 500 × 103, Mw/Mn < 1.1) PMMA was first obtained in 1998 with [(Me3Si)3C]2Yb. Stereocomplexes prepared by the mixing of the resulting syndiotactic and isotactic PMMA revealed improved physical properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 1955–1959, 2001  相似文献   

11.
Lipase‐catalyzed ring‐opening bulk polymerizations of 3(S)‐sec‐butylmorpholine‐2,5‐dione (BMD) were investigated. Selected commercial lipases were screened as catalysts for BMD polymerization at 110°C. Polymerizations catalyzed with 10 wt.‐% of lipase PPL and PC result in BMD conversions of about 70% and in molecular weights of the products ranging from 5 500 to 10 700. Lipases MJ, CR and ES showed lower catalytic activities for the polymerization of BMD. Poly(3‐sec‐butylmorpholine‐2,5‐dione) has a carboxylic acid group at one end and a hydroxy group at the other end. During the polymerization racemization of the isoleucine residue takes place. Lipase PPL was selected for a more detailed study. The apparent rate of polymerization increases with increasing PPL concentration when the polymerization temperature is 110°C. When the PPL concentration is 5 and 10 wt.‐% with respect to the monomer, a conversion of about 70% is reached after 5 d and 3 d, respectively, while for a PPL concentration of 1 wt.‐% the conversion is less than 7% even after 6  d. High concentrations of PPL (10 wt.‐%) result in high Mn values (< 4  d). The highest molecular weight poly(BMD), Mn = 19 900, resulted from a polymerization conducted at 120°C with 5 wt.‐% PPL for 6 d. The general trend observed by varying the polymerization temperature is as follows: (i) monomer conversion and Mn increase with increasing reaction temperature from 110 to 125°C, (ii) monomer conversion and Mn decrease with an increase in reaction temperature from 125 to 130°C. Water content was found to be an important factor that controls both the conversion and the molecular weight. With increasing water content, enhanced polymerization rates are achieved while the molecular weight of poly(BMD) decreases.  相似文献   

12.
A set of vanadium(III) complexes, namely {SNO}VCl2(THF)2 ( 2a , SNO = thiophene‐(N═CH)‐phenol; 2b , SNO = 5‐phenylthiophene‐(N═CH)‐phenol; 2c , SNO = 5‐phenylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2d , SNO = 5‐methylthiophene‐(N═CH)‐phenol; 2e , SNO = 5‐methylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2f , SNO = 5‐methylthiophene‐(N═CH)‐2‐methylphenol; 2g , SNO = 5‐methylthiophene‐(N═CH)‐4‐fluorophenol), were synthesized by reaction of VCl3(THF)3 with phenoxy–imine–thiophene proligands ( 1a – g ). All vanadium(III) complexes were characterized using elemental analysis and infrared and electron paramagnetic resonance spectroscopies. Upon activation with methylaluminoxane (MAO), vanadium precatalysts 2a – g proved active in the polymerization of ethylene (213.6–887.2 kg polyethylene (mol[V])−1⋅h−1), yielding high‐density polyethylenes with melting temperatures in the range 133–136 °C and crystallinities varying from 28 to 41%. The 2e/ MAO catalyst system was able to copolymerize ethylene with 1‐hexene affording poly(ethylene‐co ‐1‐hexene)s with melting temperatures varying from 126 to 102 °C and co‐monomer incorporation in the range 3.60–4.00%.  相似文献   

13.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The ring‐opening reaction of (S)‐N‐tosyl‐2‐phenylaziridine by benzylamine in ethanol at 80 °C resulted in the formation of the (S,S)‐bis(N‐tosyl‐2‐amino‐2‐phenylethyl)benzylamine ligand in a 60% yield. The corresponding titanium complex, 1‐TiCl2, was prepared by the reaction of the dilithiated parent ligand with TiCl4. This precatalyst, in combination with methylaluminoxane, was capable of polymerizing 1‐hexene with good activities, resulting in the formation of good yields of low‐dispersity, high‐molecular‐weight polymers at low temperatures but higher yields of lower molecular weight polymers at higher temperatures. 1H and 13C NMR spectra of the polymers suggested high isotacticity and predominant chain termination via β‐hydride elimination. The enantiomerically pure catalysts, (R,R)‐1‐TiCl2 and (S,S)‐1‐TiCl2, showed nearly identical polymerization results at various polymerization temperatures. However, when the catalyst was prepared from a racemic ligand, the obtained polymers had lower molecular weights with a bimodal distribution. This observation suggested diastereomeric aggregation of the racemic catalyst, which was well supported by the NMR studies, and a modified Arrhenius plot (the natural logarithm of the number‐average molecular weight vs the reciprocal of the temperature) also showed sigmoidal behavior, indicating the existence of two or more active species. Analogous zirconium precatalysts showed similar results in the polymerization of 1‐hexene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4006–4014, 2006  相似文献   

15.
Upon activation with diethylaluminium chloride (Et2AlCl), a series of phenyl‐substituted α‐diimine nickel precatalysts conducted 4‐methyl1pentene (4MP) and ethylene (E) (co)polymerizations via controlled chain‐walking to generate branched amorphous polymers with high molecular weight and narrow molecular weight distribution (Mw/Mn < 1.6). The obtained poly(4MP)s were amorphous elastomers with glass transition temperature (Tg) of ?10 ~ ?24 °C, which are higher than that of E‐4MP copolymer ( ? 63.0 °C). At room temperature (25 °C), 4MP polymerization proceeds in a living manner. The microstructures of the produced poly(4MP)s indicated the 2,1 and 1,2insertion followed by chain‐walking, the latter being predominant. The NMR analyses of the polymers showed that the obtained poly(4MP) possessed methyl, isobutyl, 2,4dimethylpentyl and 2methylhexyl groups, while the isobutyl and 2,4dimethylalkyl branches derived from 4MP were observed in the E‐4MP copolymer. The branch structures and the insertiontype of monomer were depended on the polymerization temperature, and the content of methyl branch increased with an increase in the polymerization temperature.  相似文献   

16.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

17.
D,L ‐3‐Methylglycolide (MG) was successfully polymerized with bimetallic (Al/Zn) μ‐oxo alkoxide as an initiator in toluene at 90 °C. The effect of the initiator concentration and monomer conversion on the molecular weight was studied. It is shown that the polymerization of MG follows a living process. A kinetic study indicated that the polymerization approximates the first order in the monomer, and no induction period was observed. 1H NMR spectroscopy showed that the ring‐opening polymerization proceeds through a coordination–insertion mechanism with selective cleavage of the acyl–oxygen bond of the monomer. On the basis of 1H NMR and 13C NMR analyses, the selective cleavage of the acyl–oxygen bond of the monomer mainly occurs at the least hindered carbonyl groups (P1 = 0.84, P2 = 0.16). Therefore, the main chain of poly(D,L ‐lactic acid‐co‐glycolic acid) (50/50 molar ratio) obtained from the homopolymerization of MG was primarily composed of alternating lactyl and glycolyl units. The diblock copolymers poly(ϵ‐caprolactone)‐b‐poly(D,L ‐lactic acid‐alt‐glycolic acid) and poly(L ‐lactide)‐b‐poly(D,L ‐lactic acid‐alt‐glycolic acid) were successfully synthesized by the sequential living polymerization of related lactones (ϵ‐caprolactone or L ‐lactide). 13C NMR spectra of diblock copolymers clearly show their pure diblock structures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 357–367, 2001  相似文献   

18.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   

19.
Polymerization of 1‐(trimethylgermyl)‐1‐propyne (TMGP) with TaCl5 and NbCl5 produced a colorless polymer in high yields, whose molecular weight reached about 3 × 105–14 × 105. The molecular weight distribution of the poly(TMGP) with NbCl5 in cyclohexane was somewhat narrow (Mw /Mn = ∼1.54). The TaCl5‐based poly(TMGP) dissolved in toluene, chloroform, cyclohexane, carbon disulfide, carbon tetrachloride, tetrahydrofuran, hexane, and so forth; the NbCl5‐based polymer was less soluble and did not dissolve in hexane, despite its lower molecular weight. The cis contents of the NbCl5‐ and TaCl5‐based poly(TMGP)s determined by 13C NMR were 67 ± 5 and 28 ± 3%, respectively. The onset temperature of the weight loss of poly(TMGP) in air was 350 °C, indicating fair thermal stability. The oxygen permeability coefficient (P) of poly(TMGP) at 25 °C was 7800 barrer after the methanol conditioning, and the permeability was fairly stable to aging. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2964–2969, 2000  相似文献   

20.
New amorphous semiconducting copolymers, poly(9,9‐dialkylfluorene)‐alt‐(3‐dodecylthienyl‐divinylbenzene‐3‐dodecylthienyl) derivatives (PEFTVB and POFTVB), were designed, synthesized, and characterized. The structure of copolymers was confirmed by H NMR, IR, and elemental analysis. The copolymers showed very good solubility in organic solvents and high thermal stability with high Tg of 178–185 °C. The weight average molecular weight was found to be 107,900 with polydispersity of 3.14 for PEFTVB and 76,700 with that of 3.31 for POFTVB. UV–vis absorption studies showed the maximum absorption at 428 nm (in solution) and 435 nm (in film) for PEFTVB and at 430 nm (in solution) and 436 nm (in film) for POFTVB. Photoluminescence studies showed the emission at 498 nm (in solution) and 557 nm (in film) for PEFTVB and at 498 nm (in solution) and 536 nm (in film) for POFTVB. The solution‐processed thin‐film transistors showed the carrier mobility of 2 × 10?4 cm2 V?1 s?1 for PEFTVB‐based devices and 2 × 10?5 cm2 V?1 s?1 for POFTVB‐based devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3942–3949, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号