首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, Crystal Structures, and Absorption Spectra of the New “Cupriosilicates”: K6[CuSi2O8] and Rb4[CuSi2O7] K6[CuSi2O8] and Rb4[CuSi2O7] were obtained by annealing intimate mixtures of K2O and Rb2O, respectively, CuO and SiO2 in sealed Ag cylinders at 500°C as transparent greenish-blue single crystals. The structure solution (IPDS-data Mo Kα; K6[CuSi2O8]: 1292 F2(hkl), R1 = 0.059; wR2 = 0.103 and Rb4[CuSi2O7]: 763 F2(hkl), R1 = 0.049; wR2 = 0.114) confirms the space group P1 for both compounds. K6[CuSi2O8]: a = 619.4(2); b = 665.5(2); c = 753.0(2) pm; α = 83.66(3); β = 87.71(3); γ = 70.19(3)°; Z = 1. Rb4[CuSi2O7]: a = 631.9(9); b = 707.5(10); c = 715.2(6) pm; α = 114.2(1); β = 100.7(1); γ = 107.9(1)°; Z = 1. The Madelung Part of the Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these calculated via Mean Effective Ionic Radii, MEFIR, are given. The absorption spectra of K6[CuSi2O8] and Rb4[CuSi2O7] are discussed in terms of the Angular Overlap Model, AOM.  相似文献   

2.
Crystal Structure and Absorptionspectrum of Cs4CuSi2O7, EPR Spectra of K6CuSi2O8 and A4CuSi2O7 (A = Rb, Cs), a Comparison with Egyptian Blue, CaCuSi4O10 Cs4CuSi2O7 is obtained by annealing intimate mixtures of Cs2O, CuO and SiO2 in sealed Ag containers at 500 °C as a greenish-blue powder which is sensitive to moisture. The crystal structure (triclinic, P1) contains chains of [CuSi2O7] with Cu2+ in square-planar coordination. The absorption and EPR spectra of Cs4CuSi2O7, K6CuSi2O8 and Rb4CuSi2O7 are discussed in terms of the Angular-Overlap-Model (AOM) and compared with Egyptian blue, CaCuSi4O10.  相似文献   

3.
Synthesis and Crystal Structure of the Fluoride ino‐Oxosilicate Cs2YFSi4O10 The novel fluoride oxosilicate Cs2YFSi4O10 could be synthesized by the reaction of Y2O3, YF3 and SiO2 in the stoichiometric ratio 2 : 5 : 3 with an excess of CsF as fluxing agent in gastight sealed platinum ampoules within seventeen days at 700 °C. Single crystals of Cs2YFSi4O10 appear as colourless, transparent and water‐resistant needles. The characteristic building unit of Cs2YFSi4O10 (orthorhombic, Pnma (no. 62), a = 2239.75(9), b = 884.52(4), c = 1198.61(5) pm; Z = 8) comprises infinite tubular chains of vertex‐condensed [SiO4]4? tetrahedra along [010] consisting of eight‐membered half‐open cube shaped silicate cages. The four crystallographically different Si4+ cations all reside in general sites 8d with Si–O distances from 157 to 165 pm. Because of the rigid structure of this oxosilicate chain the bridging Si–O–Si angles vary extremely between 128 and 167°. The crystallographically unique Y3+ cation (in general site 8d as well) is surrounded by four O2? and two F? anions (d(Y–O) = 221–225 pm, d(Y–F) = 222 pm). These slightly distorted trans‐[YO4F2]7? octahedra are linked via both apical F? anions by vertex‐sharing to infinite chains along [010] (?(Y–F–Y) = 169°, ?(F–Y–F) = 177°). Each of these chains connects via terminal O2? anions to three neighbouring oxosilicate chains to build up a corner‐shared, three‐dimensional framework. The resulting hexagonal and octagonal channels along [010] are occupied by the four crystallographically different Cs+ cations being ten‐, twelve‐, thirteen‐ and fourteenfold coordinated by O2? and F? anions (viz.[(Cs1)O10]19?, [(Cs2)O10F2]21?, [(Cs3)O12F]24?, and [(Cs4)O12F2]25? with d(Cs–O) = 309–390 pm and d(Cs–F) = 360–371 pm, respectively).  相似文献   

4.
Er4F2[Si2O7][SiO4]: The First Rare‐Earth Fluoride Silicate with Two Different Silicate Anions By the reaction of Er2O3 with ErF3 and SiO2 at 700 °C in sealed tantalum capsules using CsCl as flux (molar ratio 5 : 2 : 3 : 20), the compound Er4F2[Si2O7][SiO4] (triclinic, P 1; a = 648.51(5), b = 660.34(5), c = 1324.43(9) pm, α = 87.449(8), β = 85.793(8), γ = 60.816(7)°; Vm = 148.69(1) cm3/mol, Z = 2) is obtained as pale pink platelets or lath‐shaped single crystals. It consists of disilicate anions [Si2O7]6– in eclipsed conformation, ortho‐silicate anions [SiO4]4– and isolated [Er4F2]10+ units comprising two edge‐shared [Er3F] triangles. Er3+ is surrounded by 7 + 1 (Er1) or 7 (Er2–Er4) anionic neighbors, respectively, of which two are F in the case of Er1 and Er4 but only one for Er2 and Er3. The other ligands recruit from oxygen atoms of the different oxosilicate groups. The crystal structure can be described as simple rowing up of the three building groups ([SiO4]4–, [Er4F2]10+, and [Si2O7]6–) along [001]. The necessity of a large excess of fluoride for a successful synthesis of Er4F2[Si2O7][SiO4] will be discussed.  相似文献   

5.
The Mixed‐Valent Oxoferrate(II,III) K3[Fe2O4] – A Stuffed Variant of the K2[Fe2O4] Type of Structure K3[Fe2O4] has been obtained by tempering “Cs3K3CdO4” in sealed Fe containers (36 d at 450–480 °C) as dark red transparent single crystals of rectangular shape. The structure determination (IPDS diffractometer data, MoKα, 1891 collected reflections, 234 symmetry independent, R1 = 0.033, wR2 = 0.088) confirms the space group Fddd; a = 596.11(9), b = 1140.3(1), c = 1717.9(3) pm; Z = 8. K3[Fe2O4] exhibits a structure with [FeO4] tetrahedra connected via corners leading to a three‐dimensional network closely related to the KFeO2 type of structure. From the oxidation at 520 °C of iron metal with KO2 in the presence of Na2O black single crystal of K2[Fe2O4] have been obtained. K2[Fe2O4] crystallizes in the space group Pbca with Z = 8 and a = 559.18(7), b = 1122.1(1), c = 1592.8(2) pm (IPDS diffractometer data, MoKα, collected refelctions: 9543, 1213 symmetry independent, R1 = 0.043, wR2 = 0.102).  相似文献   

6.
Ho2O[SiO4] and Ho2S[SiO4]: Two Chalcogenide Derivatives of Holmium(III) ortho‐Oxosilicate Ho2O[SiO4] crystallizes monoclinically with the space group P21/c (a = 904.15(9), b = 688.93(7), c = 667.62(7) pm, β = 106.384(8)°, Z = 4) in the A‐type structure of rare‐earth(III) oxide oxosilicates. Yellow platelet‐shaped single crystals were obtained as by‐product during an experiment to synthesize Ho3Cl[SiO4]2 by reacting Ho2O3 and SiO2 in the ratio 4 : 6 with an excess of HoCl3 as flux at 1000 °C for seven days in evacuated silica ampoules. Both crystallographically different Ho3+ cations show coordination numbers of 8+1 and 7 with coordination figures of 2+1‐fold capped trigonal prisms and octahedra, in which one of the vertices changes to an edge by two instead of one coordinating atoms, respectively. The O2— anion not linked to silicon is surrounded tetrahedrally by four Ho3+ cations which built a layer parallel (100) by vertex‐ and edge‐sharing of the [OHo4]10+ units according to {[(O5)(Ho1)1/1(Ho2)3/3]4+}. Within rhombic meshes of these layers the isolated oxosilicate tetrahedra [SiO4]4— come to lie. Ho2S[SiO4] crystallizes orthorhombically in the space group Pbcm (a = 605.87(5), b = 690.41(6), c = 1064.95(9) pm, Z = 4). It also emerged as a single‐crystalline by‐product obtained during the synthesis of Ho2OS2 by reaction of a mixture of Ho2O3, Ho and S with the wall of the evacuated silica tube used as container with an excess of CsCl as flux at 800 °C. The structure of the yellow platelet‐shaped, air and water resistant crystals also distinguishes two Ho3+ cations with bicapped trigonal prisms and trigondodecahedra as coordination polyhedra for CN = 8. The S2— anions are almost square planar surrounded by four Ho3+ cations, but situated completely outside this plane. The [SHo4]10+ squares form strongly corrugated layers perpendicular to [100] by corner‐sharing according to {[(S)(Ho1)2/2(Ho2)2/2]4+}. Contrary to the oxide oxosilicates the isolated oxosilicate tetrahedra [SiO4]4— do not lie within the rhombic meshes of these layers, but above and below the (Ho2)3+ cations while viewing along [100].  相似文献   

7.
I‐Type La2Si2O7: According to La6[Si4O13][SiO4]2 not a Real Lanthanum Disilicate In attempts to synthesize lanthanum telluride silicate La2Te[SiO4] (from La, TeO2, SiO2 and CsCl, molar ratio: 1 : 1: 1 : 20, 950 °C, 7 d) or fluoride‐rich lanthanum fluoride silicates (from LaF3, La2O3, SiO2 and CsCl, molar ratio: 5 : 2 : 3 : 17, 700 °C, 7 d) in evacuated silica tubes, colourless lath‐shaped single crystals of hitherto unknown I‐type La2Si2O7 (monoclinic, P21/c; a = 726.14(5), b = 2353.2(2), c = 1013.11(8) pm, β = 90.159(7)°) were found in the CsCl‐flux melts. Nevertheless, this new modification of lanthanum disilicate does not contain any discrete disilicate groups [Si2O7]6‐ but formally three of them are dismutated into one catena‐tetrasilicate ([Si4O13]10‐ unit of four vertex‐linked [SiO4]4‐ tetrahedra) and two ortho‐silicate anions (isolated [SiO4]4‐ tetrahedra) according to La6[Si4O13][SiO4]2. This compound can be described as built up of alternating layers of these [SiO4]4‐ and the horseshoe‐shaped [Si4O13]10‐ anions along [010]. Between and within the layers the high‐coordinated La 3+ cations (CN = 9 ‐ 11) are localized. The close structural relationship to the borosilicates M3[BSiO6][SiO4](M = Ce ‐ Eu) is discussed and structural comparisons with other catena‐tetrasilicates are presented.  相似文献   

8.
The crystal structure of B‐type Er2O[SiO4] has been determined by single crystal X‐ray diffraction. It crystallizes with the (Mn,Fe)2[PO4]F type structure in the monoclinic space group C2/c (a = 14.366(2), b = 6.6976(6), c = 10.3633(16) Å, ß = 122.219(10)°, Z = 8) and shows anionic tetrahedral [SiO4]4– units and non‐silicon‐bonded O2– anions in distorted [OEr4]10+ tetrahedra. The [(Er1)O6+1] and [(Er2)O6] polyhedra form infinite chains which are connected by common edges.  相似文献   

9.
The First Binuclear Oxoferrate(II): ?Cs2K4[O2FeOFeO2]”? For the first time ?Cs2K4[Fe2O5]”? was obtained by annealing intimate mixtures of Cs2O, K2O, and CsFeO2 (molar ratio Cs : K : CsFeO2 1.3 : 2.1 : 1) in a closed Fe-cylinder (74 d; 470°C) in the form of red single crystals. The structure determination (four-circle diffractometer, MoKα , 760 out of 857 Io(h kl); R = 5.8%, Rw = 4.6%) confirms the space group C2/m; a = 707.4, b = 1138.5, c = 699.7 pm, β = 91.76°, Z = 2. Essential part of the structure is the binuclear, planar [O(1)2Fe? O(2)? FeO(1)2]6? group which is for the first time observed with oxoferrates(II). Despite different space groups the crystal structure is related to that of Rb2Na4[Co2O5].  相似文献   

10.
Synthesis and Constitution of Fluorothalenite‐Type (Y3F[Si3O10]) Fluoride catena‐ Trisilicates M3F[Si3O10] with the Lanthanides (M = Dy, Ho, Er) By the reaction of the sesquioxides M2O3 with the corresponding trifluorides MF3 (M = Dy, Ho, Er), SiO2 and CsCl as flux (molar ratio: 1 : 1 : 3 : 6; 700 °C, 7 d) in evacuated silica tubes and gastight sealed metal capsules made of platinum, niobium or tantalum, respectively, single crystals of the fluoride silicates M3F[Si3O10] (monoclinic, P21/n; Z = 4; M = Dy: a = 734.06(6), b = 1116.55(9), c = 1040.62(8) pm, β = 97.281(7)°; M = Ho: a = 730.91(6), b = 1111.68(9), c = 1037.83(8) pm, β = 97.238(7)°; M = Er: a = 727.89(6), b = 1107.02(9), c = 1035.21(8) pm, β = 97.209(7)°) were obtained. The most important building groups in the crystal structures of the thalenite type are “isolated” [FM3]8+ triangles and catena‐trisilicate anions [Si3O10]8–, which contain three [SiO4] tetrahedra linked to a chain fragment via common corners. This has the shape of a horseshoe where both the terminal tetrahedra show different conformations (eclipsed and staggered) relative to the central unit. Therefore a chelatizing coordination on the same M3+ cation via oxygen atoms of both terminal [SiO4] groups is possible. The narrow area of existence of these fluoride silicates within the lanthanide series will be discussed and structural comparisons with other catena‐trisilicates are presented.  相似文献   

11.
The title compound, Cs3[Cr(C2O4)3]·2H2O, has been synthesized for the first time and the spatial arrangement of the cations and anions is compared with those of the other members of the alkali metal series. The structure is built up of alternating layers of either the d or l enantiomers of [Cr(oxalate)3]3−. Of note is that the distribution of the [Cr(oxalate)3]3− enantiomers in the Li+, K+ and Rb+ tris(oxalato)chromates differs from those of the Na+ and Cs+ tris(oxalato)chromates, and also differs within the corresponding BEDT‐TTF [bis(ethylenedithio)tetrathiafulvalene] conducting salts. The use of tris(oxalato)chromate anions in the crystal engineering of BEDT‐TTF salts is discussed, wherein the salts can be paramagnetic superconductors, semiconductors or metallic proton conductors, depending on whether the counter‐cation is NH4+, H3O+, Li+, Na+, K+, Rb+ or Cs+. These materials can also be superconducting or semiconducting, depending on the spatial distribution of the d and l enantiomers of [Cr(oxalate)3]3−.  相似文献   

12.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

13.
Rb7[SiO4][VO4]: an Ortho‐Silicate‐Vanadate(V) Rb7[SiO4][VO4] has been obtained from a redox reaction between CdO and vanadium metal in the presence of Rb2O and SiO2 at 600 °C in an Ag container as yellow‐greenish transparent single crystals. The crystal structure determination (IPDS data: P21/c, a = 637.6(1) pm, b = 1039.7(1) pm, c = 2076.8(4) pm, β = 93.21(2)°, Z = 4, wR2 = 0.1319) reveals the presence of isolated complex anions, [SiO4]4— and [VO4]3—.  相似文献   

14.
Eu5F[SiO4]3 and Yb5S[SiO4]3: Mixed‐Valent Lanthanoid Silicates with Apatite‐Type of Structure By the reaction of Eu, EuF3, Eu2O3 with SiO2 in evacuated gold ampoules, using NaF as flux, at a temperature of 1000 °C for ten hours, dark‐red, platelet‐shaped single crystals of Eu5F[SiO4]3 are obtained. Similarly dark‐red, but pillar‐shaped single crystals of Yb5S[SiO4]3 are obtained by the reaction of Yb, Yb2O3 and S with SiO2 in the presence CsBr as flux in evacuated silica ampoules at 850 °C and an annealing time of seven days. Both compounds crystallize hexagonally (P63/m, Z = 2; Eu5F[SiO4]3: a = 954.79(9), c = 704.16(6) pm; Yb5S[SiO4]3: a = 972.36(9), c = 648.49(6) pm) in the case of Eu5F[SiO4]3 analogous to the mineral fluorapatite and for Yb5S[SiO4]3 as a bromapatite—type variety. The crystal structure containing isolated [SiO4]4— tetrahedra distinguishes two rare‐earth cation positions with coordination numbers of nine (M1) and seven (M2), in which the position M1 of the europium fluoride silicate is almost exclusively occupied by Eu2+ cations, whereas in ytterbium sulfide silicate it contains di‐ and trivalent Yb cations in the ratio 1 : 1. In both cases, however, the M2 position is only populated with M3+.  相似文献   

15.
A polyoxometalate‐based inorganic–organic hybrid compound [CoII(2, 2′‐bpy)2]2[Mo8O26] ( 1 ) was synthesized by hydrothermal methods and structurally characterized by IR spectrum, TG analysis and X‐ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n, a = 10.0681(2), b = 16.4467(2), c = 15.7838(3) Å, β = 100.046(1)°, V = 2573.52(8) Å3, Z = 2. The structure of 1 is built up from β‐[Mo8O26]4? subunits covalently linked via [CoII(2, 2′‐bpy)2]2+ fragments into a infinite 1D {[CoII(2, 2′‐bpy)2]2[Mo8O26]} polymer.  相似文献   

16.
Single Crystals of the Cerium(III) Borosilicate Ce3[BSiO6][SiO4] Colorless, lath‐shaped single crystals of Ce3[BSiO6]‐ [SiO4] (orthorhombic, Pbca; a = 990.07(6), b = 720.36(4), c = 2329.2(2) pm, Z = 8) were obtained in attempts to synthesize fluoride borates with trivalent cerium in evacuated silica tubes by reaction of educt mixtures of elemental cerium, cerium dioxide, cerium trifluoride, and boron sesquioxide (Ce, CeO2, CeF3, B2O3; molar ratio 3 : 1 : 3 : 3) in fluxing CsCl (700 °C, 7 d) with the glass wall. The crystal structure contains eight‐ (Ce1) and ninefold coordinated Ce3+ cations (Ce2 and Ce3) surrounded by oxygen atoms. Charge balance is achieved by both discrete borosilicate ([BSiO6]5– ≡ [O2BOSiO3]5–) and ortho‐silicate anions ([SiO4]4–). The former consists of a [BO3] triangle linked to a [SiO4] tetrahedron by a single vertex. The anions form layers in [001] direction alternatingly built up from [BSiO6]5– and [SiO4]4– groups while Ce3+ cations are located in between.  相似文献   

17.
On the Constitution of ‘KPbO2’ Transparent, orangered single crystals of K2Pb2O4 have been obtained by heating mixtures of K2O2 and PbO (K:Pb = 1:1) [Ag-cylinders, 560°C, 40 d, after cooling (15°C/h)]. The space group is P1 , a = 1295.94(9), b = 753.35(7), c = 697.12(8) pm, α = 118.00(1)°, β = 106.15(1)°, γ = 93.44(1)°, Z = 4, dx = 6.573 und dpyk = 6.54 g · cm3. The structure is characterized by rutilanalogous chains of edge-connected [PbO6] octahedra along [001] according to [PbO4/2O2/1] = PbO4. On both sides of such a chain there are respectively three O2?, which belong to two octahedra, alternating capped with Pb2+ or not capped, corresponding to [PbO4]Pb2[PbO4]□2… = Pb2O4. Those capped chains are held together by K(1)…K(4), each of them with C.N. 6. The order of the chains corresponds to the motive of a closest packing. The Madelung Part of Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, are calculated and discussed.  相似文献   

18.
Synthesis and Crystal Structure Determination of Lead(II) Oxide Halide Alcoholates with Different Connectivity of Pb4O4 Heterocubane‐like Subunits The reaction of red lead(II) oxide (Litharge) and lead(II) halide (Cl? and Br?) with diethylene glycole at a temperature of 180 °C leads to the isotypic compounds [Pb6(C4H8O3)O2Cl6] (1) and [Pb6(C4H8O3)O2Br6] (2) . In a similar synthesis with PbI2 as educt at temperature of 160 °C the two modifications β‐[Pb6(C4H8O3)O2I6] (3) and α‐[Pb6(C4H8O3)O2I6] (4) were found, whereas at a reaction temperature of 180 °C [Pb9(C2H4O2)(C4H8O3)O3I8] (5) was surprisingly obtained as product. The X‐ray diffraction data show that at a temperature of 180 °C a splitting of the ether took place. The cited compounds show cubane like subunits built by lead and oxygen atoms. These fragments are connected by alkoholate molecules. In 5 additionally an I6 octahedra centered by lead is observed.  相似文献   

19.
Colourless, lath‐shaped single crystals of Cs2[B12I12] · 2 CH3CN (monoclinic, C2/m; a = 1550.3(2), b = 1273.2(1), c = 1051.5(1) pm, β = 120.97(1)°; Z = 2) are obtained by the reaction of Cs2[B12H12] with an excess of I2 and ICl (molar ratio: 1 : 2) in methylene iodide (CH2I2) at 180 °C (8 h) and recrystallization of the crude product from acetonitrile (CH3CN). The crystal structure contains quasi‐icosahedral [B12I12]2– anions (d(B–B) = 176–182 pm, d(B–I) = 211–218 pm) which arrange in a cubic closest‐packed fashion. All octahedral interstices are filled with centrosymmetric dimer‐cations {[Cs(N≡C–CH3)]2}2+ containing a diamond‐shaped four‐membered (Cs–N–Cs–N) ring of Cs+ cations and nitrogen atoms of the solvating acetonitrile molecules (d(Cs–N) = 321 pm, 2 ×). The cesium cations themselves actually reside in the distorted tetrahedral voids of the cubic [B12I12]2– packing (d(Cs–I) = 402–461 pm, 10 ×) if one ignores the solvent particles.  相似文献   

20.
Two Chloride Silicates of Yttrium: Y3Cl[SiO4]2 and Y6Cl10[Si4O12] The chloride‐poor yttrium(III) chloride silicate Y3Cl[SiO4]2 crystallizes orthorhombically (a = 685.84(4), b = 1775.23(14), c = 618.65(4) pm; Z = 4) in space group Pnma. Single crystals are obtained by the reaction of Y2O3, YCl3 and SiO2 in the stoichiometric ratio 4 : 1 : 6 with ten times the molar amount of YCl3 as flux in evacuated silica tubes (7 d, 1000 °C) as colorless, strongly light‐reflecting platelets, insensitive to air and water. The crystal structure contains isolated orthosilicate units [SiO4]4– and comprises cationic layers {(Y2)Cl}2+ which are alternatingly piled parallel (010) with anionic double layers {(Y1)2[SiO4]2}2–. Both crystallographic different Y3+ cations exhibit coordination numbers of eight. Y1 is surrounded by one Cl and 7 O2– anions as a distorted trigonal dodecahedron, whereas the coordination polyhedra around Y2 show the shape of bicapped trigonal prisms consisting of 2 Cl and 6 O2– anions. The chloride‐rich chloride silicate Y6Cl10[Si4O12] crystallizes monoclinically (a = 1061,46(8), b = 1030,91(6), c = 1156,15(9) pm, β = 103,279(8)°; Z = 2) in space group C2/m. By the reaction of Y2O3, YCl3 and SiO2 in 2 : 5 : 6‐molar ratio with the double amount of YCl3 as flux in evacuated silica tubes (7 d, 850 °C), colorless, air‐ and water‐resistant, brittle single crystals emerge as pseudo‐octagonal columns. Here also a layered structure parallel (001) with distinguished cationic double‐layers {(Y2)5Cl9}6+ and anionic layers {(Y1)Cl[Si4O12]}6– is present. The latter ones contain discrete cyclo‐tetrasilicate units [Si4O12]8– of four cyclically corner‐linked [SiO4] tetrahedra in all‐ecliptical arrangement. The coordination sphere around (Y1)3+ (CN = 8) has the shape of a slightly distorted hexagonal bipyramid comprising 2 Cl and 6 O2– anions. The 5 Cl and 2 O2– anions building the coordination polyhedra around (Y2)3+ (CN = 7) form a strongly distorted pentagonal bipyramid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号