首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose and analyze efficient preconditioners for solving systems of equations arising from the p-version for the finite element/boundary element coupling. The first preconditioner amounts to a block Jacobi method, whereas the second one is partly given by diagonal scaling. We use the generalized minimum residual method for the solution of the linear system. For our first preconditioner, the number of iterations of the GMRES necessary to obtain a given accuracy grows like log2 p, where p is the polynomial degree of the ansatz functions. The second preconditioner, which is more easily implemented, leads to a number of iterations that behave like p log3 p. Computational results are presented to support this theory. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 47–61, 1998  相似文献   

2.
A priori error estimates in the H1- and L2-norms are established for the finite element method applied to the exterior Helmholtz problem, with modified Dirichlet-to-Neumann (MDtN) boundary condition. The error estimates include the effect of truncation of the MDtN boundary condition as well as that of discretization of the finite element method. The error estimate in the L2-norm is sharper than that obtained by the author [D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math. 200 (1) (2007) 21-31] for the truncated DtN boundary condition.  相似文献   

3.
Convergence results are presented for the immersed boundary (IB) method applied to a model Stokes problem. As a discretization method, we use the finite element method. First, the immersed force field is approximated using a regularized delta function. Its error in the W?1, p norm is examined for 1 ≤ p < n/(n ? 1), with n representing the space dimension. Subsequently, we consider IB discretization of the Stokes problem and examine the regularization and discretization errors separately. Consequently, error estimate of order h1 ? α in the W1, 1 × L1 norm for the velocity and pressure is derived, where α is an arbitrary small positive number. The validity of those theoretical results is confirmed from numerical examples.  相似文献   

4.
5.
The coincidence of an approximate solution to the boundary value problem for an ordinary differential equation with the exact solution at mesh nodes is proved for a certain class of the generalized finite element methods.  相似文献   

6.
This paper presents a heterogeneous finite element method fora fluid–solid interaction problem. The method, which combinesa standard finite element discretization in the fluid regionand a mixed finite element discretization in the solid region,allows the use of different meshes in fluid and solid regions.Both semi-discrete and fully discrete approximations are formulatedand analysed. Optimal order a priori error estimates in theenergy norm are shown. The main difficulty in the analysis iscaused by the two interface conditions which describe the interactionbetween the fluid and the solid. This is overcome by explicitlybuilding one of the interface conditions into the finite elementspaces. Iterative substructuring algorithms are also proposedfor effectively solving the discrete finite element equations.  相似文献   

7.
In this article, we introduce and analyze a weak Galerkin finite element method for numerically solving the coupling of fluid flow with porous media flow. Flows are governed by the Stokes equations in primal velocity‐pressure formulation and Darcy equation in the second order primary formulation, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers‐Joseph‐Saffman law. By using the weak Galerkin approach, we consider the two‐dimensional problem with the piecewise constant elements for approximations of the velocity, pressure, and hydraulic head. Stability and optimal error estimates are obtained. Finally, we provide several numerical results illustrating the good performance of the proposed scheme and confirming the optimal order of convergence provided by the weak Galerkin approximation. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1352–1373, 2017  相似文献   

8.
9.
This article establishes a discrete maximum principle (DMP) for the approximate solution of convection–diffusion–reaction problems obtained from the weak Galerkin (WG) finite element method on nonuniform rectangular partitions. The DMP analysis is based on a simplified formulation of the WG involving only the approximating functions defined on the boundary of each element. The simplified weak Galerkin (SWG) method has a reduced computational complexity over the usual WG, and indeed provides a discretization scheme different from the WG when the reaction terms are present. An application of the SWG on uniform rectangular partitions yields some 5- and 7-point finite difference schemes for the second order elliptic equation. Numerical experiments are presented to verify the DMP and the accuracy of the scheme, particularly the finite difference scheme.  相似文献   

10.
In this paper, a weak Galerkin finite element method is proposed and analyzed for the second-order elliptic equation with mixed boundary conditions. Optimal order error estimates are established in both discrete $H^1$ norm and the standard $L^2$ norm for the corresponding WG approximations. The numerical experiments are presented to verify the efficiency of the method.  相似文献   

11.
The incorporation of the Galerkin technique in the finite element method has removed the constraint of finding a variational formulation for many problems of mathematical physics. The method has been successfully applied to many areas and has received wide acceptance. However, in the process of transplanting the concept from the Galerkin method for the entire domain to the Galerkin finite element method, some formal details have been overlooked or glossed over in the literature. This paper considers some of these details, including a possible reason for integration by parts and the contribution of interelement discontinuity terms.  相似文献   

12.
The present paper deals with the finite element analysis of the reservoir of infinite extent using a novel far-boundary condition. The equations of motion are expressed in terms of the pressure only assuming water as inviscid and incompressible. The truncation boundary condition is developed numerically from the classical wave equation. Comparative studies show that the proposed far-boundary condition is numerically efficient and accurate over the existing ones, available in the literature. The effect of the geometry of the reservoir bed and the adjacent structure on the development hydrodynamic pressure has been studied. The results show that the geometry of the reservoir bed and as well as the adjacent structure has considerable effect on the development of hydrodynamic pressure at the dam–reservoir interface.  相似文献   

13.
This paper describes the development of an efficient semi-analytical method, namely scaled boundary finite-element method (SBFEM) for a quadruple corner-cut ridged square waveguide. Thinking about its symmetry, only a quarter of its cross-section needs to be considered and divided into a few sub-domains. Only the boundaries of the sub-domains are discretized with line elements leading to great flexibility in mesh generation. The singularities in the re-entrant corners are represented analytically by locating the scaling center in those points. Variational principle approach is presented to formulate the basis SBFE equations for the sub-domains. Then, an equation of the ‘stiffness matrix’ on the discretized boundary is established. Finally, by using the continued-fraction solution and introducing auxiliary variables, a generalized eigenvalue equation with respect to the cutoff wave number is obtained without introducing an internal mesh. Numerical results are presented to verify the accuracy and efficiency of the present technique. Variations of the cutoff wave numbers of the dominant and higher-order modes for both TE and TM cases with the corner-cut ridge dimensions are investigated in details. Simple approximate equations are found to accurately predict the cutoff wave number of TE20U, TE22, TM11 and TM13L modes. The single mode bandwidth of the waveguide is also calculated.  相似文献   

14.
A priori error estimates are established for the DtN (Dirichlet-to-Neumann) finite element method applied to the exterior Helmholtz problem. The error estimates include the effect of truncation of the DtN boundary condition as well as that of the finite element discretization. A property of the Hankel functions which plays an important role in the proof of the error estimates is introduced.  相似文献   

15.
In this article, we present a posteriori error analysis for the regularization formulation of the eigenvalue problem arising from the vibration frequencies of the cavity flow. The quasi‐optimality of the adaptive finite element method is also proved for the single eigenvalues under the Dörfler's marking strategy without marking the oscillation terms and enforcing the so‐called interior node property. Numerical examples illustrate the quasi‐optimality of the adaptive finite element method. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 900–922, 2015  相似文献   

16.
In this paper, we present a theory for bounding the minimum eigenvalues, maximum eigenvalues, and condition numbers of stiffness matrices arising from the -version of finite element analysis. Bounds are derived for the eigenvalues and the condition numbers, which are valid for stiffness matrices based on a set of general basis functions that can be used in the -version. For a set of hierarchical basis functions satisfying the usual local support condition that has been popularly used in the -version, explicit bounds are derived for the minimum eigenvalues, maximum eigenvalues, and condition numbers of stiffness matrices. We prove that the condition numbers of the stiffness matrices grow like , where is the number of dimensions. Our results disprove a conjecture of Olsen and Douglas in which the authors assert that ``regardless of the choice of basis, the condition numbers grow like or faster". Numerical results are also presented which verify that our theoretical bounds are correct.

  相似文献   


17.
We consider the numerical approximation of singularly perturbed reaction‐diffusion problems over two‐dimensional domains with smooth boundary. Using the h version of the finite element method over appropriately designed piecewise uniform (Shishkin) meshes, we are able to uniformly approximate the solution at a quasi‐optimal rate. The results of numerical computations showing agreement with the analysis are also presented. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 89–111, 2003  相似文献   

18.
In this article, we combine mixed finite element method, multiscale discretization, and Rayleigh quotient iteration to propose a new adaptive algorithm based on residual type a posterior error estimates for the Stokes eigenvalue problem. Both reliability and efficiency of the error indicator are proved. The efficiency of the algorithm is also investigated using Chen's Innovation Finite Element Method (iFEM) package. Numerical results are satisfying.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 31–53, 2015  相似文献   

19.
The mortar finite element method is a special domain decomposition method, which can handle the situation where meshes on different subdomains need not align across the interface. In this article, we will apply the mortar element method to general variational inequalities of free boundary type, such as free seepage flow, which may show different behaviors in different regions. We prove that if the solution of the original variational inequality belongs to H2(D), then the mortar element solution can achieve the same order error estimate as the conforming P1 finite element solution. Application of the mortar element method to a free surface seepage problem and an obstacle problem verifies not only its convergence property but also its great computational efficiency. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

20.
This article first recalls the results of a stabilized finite element method based on a local Gauss integration method for the stationary Stokes equations approximated by low equal‐order elements that do not satisfy the inf‐sup condition. Then, we derive general superconvergence results for this stabilized method by using a local coarse mesh L2 projection. These supervergence results have three prominent features. First, they are based on a multiscale method defined for any quasi‐uniform mesh. Second, they are derived on the basis of a large sparse, symmetric positive‐definite system of linear equations for the solution of the stationary Stokes problem. Third, the finite elements used fail to satisfy the inf‐sup condition. This article combines the merits of the new stabilized method with that of the L2 projection method. This projection method is of practical importance in scientific computation. Finally, a series of numerical experiments are presented to check the theoretical results obtained. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 28: 115‐126, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号