首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose an integrable spin-1/2 Heisenberg model where the exchange couplings and Dzyloshinky–Moriya interactions are dependent on the sites. By employing the quantum inverse scattering method, we obtain the eigenvalues and the Bethe ansatz equation of the system with the periodic boundary condition. Furthermore, we obtain the exact solution and study the boundary effect of the system with the anti-periodic boundary condition via the off-diagonal Bethe ansatz. The operator identities of the transfer matrix at the inhomogeneous points are proved at the operator level. We construct the T –Q relation based on them. From which, we obtain the energy spectrum of the system. The corresponding eigenstates are also constructed. We find an interesting coherence state that is induced by the topological boundary.  相似文献   

2.
In this paper a gauge theory is proposed for the two-band model of Chern insulators.Based on the so-calle't Hooft monopole model,a U(1)Maxwell electromagnetic sub-field is constructed from an SU(2)gauge field,from which arise two types of topological defects,monopoles and e2 merons.We focus on the topological number in the Hall conductance σxy=e2/hC,where C is the Chern number.It is discovered that in the monopole case C is indeterminate,while in the meron case C takes different values,due to a varying on-site energy m.As a typical example,we apply this method to the square lattice and compute the winding numbers(topological charges)of the defects;the C-evaluations we obtain reproduce the results of the usual literature.Furthermore,based on the gauge theory we propose a new model to obtain the high Chern numbers|C|=2,4.  相似文献   

3.
The topological magnon insulator on a honeycomb lattice with Dzyaloshinskii–Moriya interaction(DMI) is studied under the application of a circularly polarized light.At the high-frequency regime, the effective tight-binding model is obtained based on Brillouin–Wigner theory.Then, we study the corresponding Berry curvature and Chern number.In the Dirac model, the interplay between a light-induced handedness-dependent effective DMI and intrinsic DMI is discussed.  相似文献   

4.
In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthe′n potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum number κ using the supersymmetry quantum mechanics. The energy eigenvalues and the corresponding Dirac wave functions are obtained in closed forms.  相似文献   

5.
In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthén potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum number κ using the supersymmetry quantum mechanics. The energy eigenvalues and the corresponding Dirac wave functions are obtained in closed forms.  相似文献   

6.
Photonic waveguide arrays provide a simple and versatile platform for simulating conventional topological systems. Here, we investigate a novel one-dimensional(1D) topological band structure, a dimer chain, consisting of silicon waveguides with alternating self-coupling and inter-coupling. Coupled mode theory is used to study topological features of such a model. It is found that topological invariants of our proposed model are described by the global Berry phase instead of the Berry phase of the upper or lower energy band, which is commonly used in the1 D topological models such as the Su–Schrieffer–Heeger model. Next, we design an array configuration composed of two dimer patterns with different global Berry phases to realize the topologically protected waveguiding. The topologically protected propagation feature is simulated based on the finite-difference time-domain method and then observed in the experiment. Our results provide an in-depth understanding of the dynamics of the topological defect state in a 1D silicon waveguide array, and may provide different routes for on-chip lightwave shaping and routing.  相似文献   

7.
We proposed an entangled multi-knot lattice model to explore the exotic statistics of anyons. Long-range coupling interaction is a fundamental character of this knot lattice model. The short-range coupling models, such as the Ising model,Hamiltonian model of quantum Hall effect, fermion pairing model, Kitaev honeycomb lattice model, and so on, are the short-range coupling cases of this knot lattice model. The long-range coupling knot lattice model bears Abelian and nonAbelian anyons, and shows integral and fractional filling states like the quantum Hall system. The fusion rules of anyons are explicitly demonstrated by braiding crossing states. The eigenstates of quantum models can be represented by a multilayer link lattice pattern whose topology is characterized by the linking number. This topological linking number offers a new quantity to explain and predict physical phenomena in conventional quantum models. For example, a convection flow loop is introduced into the well-known Bardeen–Cooper–Schrieffer fermion pairing model to form a vortex dimer state that offers an explanation of the pseudogap state of unconventional superconductors, and predicts a fractionally filled vortex dimer state. The integrally and fractionally quantized Hall conductance in the conventional quantum Hall system has an exact correspondence with the linking number in this multi-knot lattice model. The real-space knot pattern in the topological insulator model has an equivalent correspondence with the Lissajous knot in momentum space. The quantum phase transition between different quantum states of the quantum spin model is also directly quantified by the change of topological linking number, which revealed the topological character of phase transition. Circularized photons in an optical fiber network are a promising physical implementation of this multi-knot lattice, and provide a different path to topological quantum computation.  相似文献   

8.
Due to the topology, insulators become non-trivial, particularly those with large Chern numbers which support multiple edge channels, catching our attention. In the framework of the tight binding approximation, we study a non-interacting Chern insulator model on the three-component dice lattice with real nearest-neighbor and complex next-nearest-neighbor hopping subjected to Λ-or V-type sublattice potentials. By analyzing the dispersions of corresponding energy bands, we find that the system undergoes a metal–insulator transition which can be modulated not only by the Fermi energy but also the tunable extra parameters. Furthermore, rich topological phases, including the ones with high Hall plateau, are uncovered by calculating the associated band’s Chern number. Besides, we also analyze the edge-state spectra and discuss the correspondence between Chern numbers and the edge states by the principle of bulk-edge correspondence. In general, our results suggest that there are large Chern number phases with C = ±3 and the work enriches the research about large Chern numbers in multiband systems.  相似文献   

9.
The Chern number is often used to distinguish different topological phases of matter in two-dimensional electron systems. A fast and efficient coupling-matrix method is designed to calculate the Chern number in finite crystalline and disordered systems. To show its effectiveness, we apply the approach to the Haldane model and the lattice Hofstadter model, and obtain the correct quantized Chern numbers. The disorder-induced topological phase transition is well reproduced, when the disorder strength is increased beyond the critical value. We expect the method to be widely applicable to the study of topological quantum numbers.  相似文献   

10.
《中国物理 B》2021,30(5):50201-050201
We study the exact solution of the Gaudin model with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions. The energy and Bethe ansatz equations of the Gaudin model can be obtained via the off-diagonal Bethe ansatz method. Based on the off-diagonal Bethe ansatz solutions, we construct the Bethe states of the inhomogeneous X X X Heisenberg spin chain with the generic open boundaries. By taking a quasi-classical limit, we give explicit closed-form expression of the Bethe states of the Gaudin model. From the numerical simulations for the small-size system, it is shown that some Bethe roots go to infinity when the Gaudin model recovers the U(1) symmetry. Furthermore,it is found that the contribution of those Bethe roots to the Bethe states is a nonzero constant. This fact enables us to recover the Bethe states of the Gaudin model with the U(1) symmetry. These results provide a basis for the further study of the thermodynamic limit, correlation functions, and quantum dynamics of the Gaudin model.  相似文献   

11.
In this study, we investigate theoretically the effect of spin–orbit coupling on the energy level spectrum and spin texturing of a quantum wire with a parabolic confining potential subjected to the perpendicular magnetic field. Highly accurate numerical calculations have been carried out using a finite element method. Our results reveal that the interplay between the spin–orbit interaction and the effective magnetic field significantly modifies the band structure, producing additional subband extrema and energy gaps. Competing effects between external field and spin–orbit interactions introduce complex features in spin texturing owing to the couplings in energy subbands. We obtain that spatial modulation of the spin density along the wire width can be considerably modified by the spin–orbit coupling strength, magnetic field and charge carrier concentration.  相似文献   

12.
《中国物理 B》2021,30(7):77101-077101
We study the topological properties of the one-dimensional non-Hermitian Kitaev model with complex either periodic or quasiperiodic potentials. We obtain the energy spectrum and the phase diagrams of the system by using the transfer matrix method as well as the topological invariant. The phase transition points are given analytically. The Majorana zero modes in the topological nontrivial regimes are obtained. Focusing on the quasiperiodic potential, we obtain the phase transition from the topological superconducting phase to the Anderson localization, which is accompanied with the Anderson localization–delocalization transition in this non-Hermitian system. We also find that the topological regime can be reduced by increasing the non-Hermiticity.  相似文献   

13.
By using C-mapping topological current theory and gauge potential decomposition, we discuss the self-dual equation and its solution in the SU(N) Dunne-Jackiw-Pi-Trugenberger model and obtain a new concrete self-dual equation with a δ function. For the SU(3) case, we obtain a new self-duality solution and find the relationship between the soliton solution and topological number which is determined by the Hopf index and Brouwer degree of C-mapping. In our solution, the flux of this soliton is naturally quantized.  相似文献   

14.
杨冠卿  张世著  徐波  陈涌海  王占国 《中国物理 B》2017,26(6):68103-068103
Two kinds of InAs/GaAs quantum dot(QD) structures are grown by molecular beam epitaxy in formation–dissolution–regrowth method with different in-situ annealing and regrowth processes. The densities and sizes of quantum dots are different for the two samples. The variation tendencies of PL peak energy, integrated intensity, and full width at half maximum versus temperature for the two samples are analyzed, respectively. We find the anomalous temperature dependence of the InAs/GaAs quantum dots and compare it with other previous reports. We propose a new energy band model to explain the phenomenon. We obtain the activation energy of the carrier through the linear fitting of the Arrhenius curve in a high temperature range. It is found that the Ga As barrier layer is the major quenching channel if there is no defect in the material. Otherwise, the defects become the major quenching channel when some defects exist around the QDs.  相似文献   

15.
Floquet topological insulators(FTIs) have been used to study the topological features of a dynamic quantum system within the band structure. However, it is difficult to directly observe the dynamic modulation of band structures in FTIs. Here, we implement the dynamic Su–Schrieffer–Heeger model in periodically curved waveguides to explore new behaviors in FTIs using light field evolutions. Changing the driving frequency produces near-field evolutions of light in the high-frequency curved waveguide array that are equivalent to the behaviors in straight arrays. Furthermore, at modest driving frequencies,the field evolutions in the system show boundary propagation, which are related to topological edge modes. Finally, we believe curved waveguides enable profound possibilities for the further development of Floquet engineering in periodically driven systems, which ranges from condensed matter physics to photonics.  相似文献   

16.
The relativistic quantum motions of the oscillator field(via the Klein–Gordon oscillator equation)under a uniform magnetic field in a topologically non-trivial space-time geometry are analyzed. We solve the Klein–Gordon oscillator equation using the Nikiforov-Uvarov method and obtain the energy profile and the wave function. We discuss the effects of the non-trivial topology and the magnetic field on the energy eigenvalues. We find that the energy eigenvalues depend on the quantum flux field tha...  相似文献   

17.
We investigate a measure of distinguishability defined by the quantum Chernoff bound, which naturally induces the quantum Chernoff metric over a manifold of quantum states. Based on a quantum statistical model, we alternatively derive this metric by means of perturbation expansion. Moreover, we show that the quantum Chernoff metric coincides with the infinitesimal form of the quantum Hellinger distance, and reduces to the variant version of the quantum Fisher information for the single-parameter case. We also give the exact form of the quantum Chernoff metric for a qubit system containing a single parameter.  相似文献   

18.
Motivated by the growing interest in the novel quantum phases in materials with strong electron correlations and spin–orbit coupling, we study the interplay among the spin–orbit coupling, Kondo interaction, and magnetic frustration of a Kondo lattice model on a two-dimensional honeycomb lattice.We calculate the renormalized electronic structure and correlation functions at the saddle point based on a fermionic representation of the spin operators.We find a global phase diagram of the model at half-filling, which contains a variety of phases due to the competing interactions.In addition to a Kondo insulator, there is a topological insulator with valence bond solid correlations in the spin sector, and two antiferromagnetic phases.Due to the competition between the spin–orbit coupling and Kondo interaction, the direction of the magnetic moments in the antiferromagnetic phases can be either within or perpendicular to the lattice plane.The latter antiferromagnetic state is topologically nontrivial for moderate and strong spin–orbit couplings.  相似文献   

19.
By using the molecular orbit theory, we give a new model potential acting on the excited electron within a molecule. The potential is the total interaction energy of this electron with all the nuclei and other electrons.We find that the introduction of a new model potential results in an extreme increase of the number of closed orbits as compared to the hydrogen atom. Making use of the molecular closed-orbit theory (MCOT) and the new model potential, we calculate the recurrence spectra of H2 molecules in parallel electric and magnetic fields for different quantum defects. The modulations in the spectra can be analysed in terms of the scattering of the excited electron on the molecular core. Our results are in good agreement with the quantum results.  相似文献   

20.
The thermodynamics of black holes(BHs) has had a profound impact on theoretical physics,providing insight into the nature of gravity, the quantum structure of spacetime and the fundamental laws governing the Universe. In this study, we investigate thermal geometries and Hawking evaporation of the recently proposed topological dyonic dilaton BH in anti-de Sitter(Ad S) space. We consider Rényi entropy and obtain the relations for pressure, heat capacity and Gibbs free energy and observe that the R...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号