首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase behavior of thin‐film blends of polystyrene (PS) and the random copolymer poly(styrene‐co‐4‐bromostyrene) (PBS) was studied with atomic force microscopy (AFM) and small‐angle X‐ray scattering (SAXS). Phase behavior was studied as a function of the PBS and PS degree of polymerization (N), degree of miscibility [controlled via the volume fraction of bromine in the copolymer (f)], and annealing conditions. The Flory–Huggins interaction parameter χ was measured directly from SAXS as a function of temperature and scaled with f as χ = f2χS–BrS [where χS–BrS represents the segmental interaction between PS and the homopolymer poly(4‐bromostyrene)] Simulations based on the Flory–Huggins theory and χ measured from SAXS were used to predict phase diagrams for all the systems studied. The PBS/PS system exhibited upper critical solution temperature behavior. The AFM studies showed that increasing f in PBS led to progressively different morphologies, from flat topography (i.e., one phase) to interconnected structures or islands. In the two‐phase region, the morphology was a strong function of N (due to changes in mobility). A comparison of the estimated PBS volume fractions from the AFM images with the PBS bulk volume fraction in the blend suggested the encapsulation of PBS in PS, supporting the work of previous researchers. Excellent agreement between the phase diagram predictions (based on χ measured by SAXS) and the AFM images was observed. These studies were also consistent with interdiffusion measurements of PBS/PS interfaces (with Rutherford backscattering spectroscopy), which indicated that the interdiffusion coefficient decreased with increasing χ in the one‐phase region and dropped to zero deep inside the two‐phase region. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 255–271, 2002  相似文献   

2.
Intermolecular interactions in random copolymer systems depend on the copolymer composition as being observed as a miscibility window in the random copolymer blends. The copolymer composition dependencies of the Flory-Huggins χ parameter and the heats of mixing ▵HM(∞) at infinite dilution were studied for the solutions of poly(methyl methacrylate-ran-n-butyl methacrylate) (MMAnBMA) in cyclohexanone (CHN). The copolymer composition dependencies of χ obtained from osmotic pressures and of ▵HM(∞) measured with a microcalorimeter were concave curves. This suggests that the random copolymers MMAnBMA interact with CHN more attractively than do the homopolymers PMMA and PnBMA. This is caused by the repulsion effect between the MMA and nBMA segments. The equation-of-state theory extended to the random copolymer systems by us reproduced fairly well these thermodynamic properties. The χ parameter for the PMMA/PnBMA blends was calculated using the equation-of-state theory with the MMA/nBMA intersegmental parameters employed for the above random copolymer solutions in CHN. The χ value calculated thus was in satisfactory agreement with that obtained from the random copolymer solutions using the Flory-Huggins theory extended to multicomponent systems. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Flory–Huggins interaction parameters (χ) between poly(dimethylsiloxane) (weight‐average molecular weight = 152 kg/mol) and various solvents (methyl ethyl ketone, toluene and n‐octane) were determined as a function of composition and temperature with vapor‐pressure measurements. These data, complemented by independent information for dilute and very concentrated solutions, serve as the basis for a discussion of solvent quality via different theoretical relations. Regardless of polymer concentration, the χ values fall from methyl ethyl ketone via toluene to n‐octane, the ketone being the worst solvent and the hydrocarbon being the best solvent. The variation of χ with composition and temperature is complex. Within the range of moderate polymer concentrations, the influences of composition decrease with increasing solvent quality. Additional effects become noticeable at the ends of the composition scale. The enthalpy parts (χH) and entropy parts (χS) of the Flory–Huggins interaction parameter, obtained from χ(T), vary considerably with composition and change their sign in some cases; these constituents of the Flory–Huggins interaction parameter do not permit a direct assessment of solvent quality. A clear‐cut picture is, however, regained with a comparison of the interdependence of χS and χH. The elimination of explicit concentration influences re‐establishes the order in the solvent quality setup via χ. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 651–662, 2001  相似文献   

4.
Surface‐induced layering of fluorinated and protonated segments in thin films of a main‐chain liquid‐crystalline polymer, consisting of α‐methylstilbene, bridged by a fluorinated group was revealed by neutron reflectometry. The layering was driven by the difference in surface energy of the fluorinated and protonated segments and by the inherent ordering of the polymer. The lower‐surface‐energy fluorinated segments segregated to the air surface, and the protonated segments segregated to the SiOx layer at the Si substrate. The ordering induced by the interface decayed into the film with a characteristic decay length of about 100 Å. The surface‐induced periodicity ranged from 15 to 20 Å, which is approximately equal to the molecular dimension of the repeating unit on the polymer backbone. The magnitude of segregation increased upon annealing in the liquid‐crystalline temperature range. The segregation was retained upon annealing above the bulk order–disorder transition temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2817–2824, 2002  相似文献   

5.
Herein, we present a simple method for producing nanoporous templates with a high degree of lateral ordering by self‐assembly of block copolymers. A key feature of this approach is control of the orientation of polymeric microdomains through the use of hydrophilic additives as structure directing agents. Incorporation of hydrophilic poly(ethylene oxide) (PEO) moieties into poly(styrene‐b‐methyl methacrylate) (PSt‐b‐PMMA) diblock copolymers gives vertical alignment of PMMA cylinders on the substrate after solvent annealing. Because of the miscibility between PEO and PMMA, PEO additives were selectively positioned within PMMA microdomains and by controlling the processing conditions, it was found that ordering of PSt‐b‐PMMA diblock copolymers could be achieved. The perpendicular orientation of PMMA cylinders was achieved by increasing the molecular size of the PEO additives leading to an increased hydrophilicity of the PMMA domains and consequently to control the orientation of microdomains in PSt‐b‐PMMA block copolymer thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8041–8048, 2008  相似文献   

6.
A versatile coupling reaction for the preparation of polybutadiene–poly‐(hexafluoropropylene oxide) (BF) diblock copolymers is described. Six diblock copolymers with different block lengths were characterized by nuclear magnetic resonance spectroscopy and size exclusion chromatography; all six had total molecular weights below 15,000. Microphase separation of the block copolymers in the bulk state was established by small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry. SAXS data suggest that the diblocks are characterized by an unusually large Flory‐Huggins interaction parameter, χ, on the order of 10. However, extraction of χ from the order–disorder transition gave large (order 1) but significantly different values, thereby suggesting that these copolymers are too small and too strongly interacting to be described by block copolymer mean‐field theory. Dynamic light scattering was used to analyze dilute solutions of the title block copolymers in four selective organic solvents; the sizes of the micelles formed were solvent dependent. The micellar aggregates were large and nonspherical, and this is also attributed to the high degree of incompatibility between the two immiscible blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3685–3694, 2005  相似文献   

7.
Photo‐responsive block copolymer mPEG‐b‐poly(Tyr)‐g‐NB was prepared by introduction of o‐nitrobenzyl ester group into the side chain of amphiphilic poly(ethylene glycol)‐b‐poly(α‐hydroxy acids) (mPEG‐b‐poly(Tyr)) containing pendent alkynyl group via copper‐catalyzed azide‐alkyne cycloaddition reaction. The amphiphilic mPEG‐b‐poly(Tyr) was synthesized via the ring‐opening polymerization of O‐carboxyanhydrides, with monomethoxy poly(ethylene glycol) (mPEG) as macroinitiator. The molecular structure, self‐assembly, and photo‐controlled release of the obtained mPEG‐b‐poly(Tyr)‐g‐NB were thoroughly investigated. mPEG‐b‐poly(Tyr)‐g‐NB could self‐assemble into spherical micelles in water and showed disassembly under UV light irradiation, which was demonstrated by means of UV‐vis spectroscopy, scan electron microscopes, and dynamic light scattering measurement. Fluorescence emission measurements demonstrated that Nile red, encapsulated by micelles, can be released upon UV irradiation. This study provides a convenient way to construct smart poly(α‐hydroxy acids)‐based nanocarriers for controlled release of hydrophobic drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

9.
We investigated the morphological transitions induced by alkyne/azide Huisgen 1,3‐dipolar cycloaddition reaction in a series of poly(ethylene oxide)‐block‐poly(n‐butyl methacrylate‐random‐propargyl methacrylate) (PEO‐b‐P(nBMA‐r‐PgMA)) diblock copolymers. Studies on the phase behavior of neat diblock copolymers revealed that the interactions between the PEO block and the terminal alkyne groups in the P(nBMA‐r‐PgMA) block significantly affected the miscibility between the two blocks and the crystallization of the PEO block. Phase‐mixed diblock copolymers underwent disorder‐to‐order transitions by blending with Rhodamine B azide and annealing at elevated temperatures. Different morphologies were achieved, not only by controlling the composition of the block copolymer but also by blending the diblock copolymer with different amount of azides. Microphase separated PEO‐b‐P(nBMA‐r‐PgMA) diblock copolymer also exhibited reactivity toward azides, and order‐to‐order transitions were observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

10.
Three poly(4‐trimethylsilylstyrene)‐block‐polyisoprenes (TIs), the molecular weights of which were 82,000, 152,000 and 291,000 (TI‐82K, TI‐152K, and TI‐291K), were synthesized by sequential anionic polymerizations. The component polymers were a miscible pair that presented a lower critical solution temperature phase diagram if blended. The TI phase behavior was investigated with transmission electron microscopy. The order–disorder transition could be observed at a temperature between 200 °C (the ordered state) and 150 °C (the disordered state) for the block copolymer TI‐152K. The block copolymer TI‐82K presented the disordered state at 200 °C, whereas TI‐291K was in the ordered state at 150 °C. With the Flory–Huggins interaction parameter between poly(4‐trimethylsilylstyrene) and polyisoprene, which was evaluated by small‐angle neutron scattering for the block copolymers, the TI phase behavior could be reasonably explained by mean‐field theory. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1214–1219, 2005  相似文献   

11.
Hydrophobic‐hydrophilic monolithic dual‐phase plates have been prepared by a two‐step polymerization method for two‐dimensional thin‐layer chromatography of low‐molecular‐weight compounds, namely, several dyes. The thin 200 μm poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) layers attached to microscope glass plates were prepared using a UV‐initiated polymerization method within a simple glass mold. After cutting and cleaning the specific area of the layer, the reassembled mold was filled with a polymerization mixture of butyl methacrylate and ethylene dimethacrylate and subsequently irradiated with UV light. During the second polymerization process, the former layer was protected from the UV light with a UV mask. After extracting the porogens and hydrolyzing the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) area, these two‐dimensional layers were used to separate a mixture of dyes with great difference in their polarity using reversed‐phase chromatography mode within the hydrophobic layer and then hydrophilic interaction chromatography mode along the hydrophilic area. In the latter dimension only the specific spot was developed further. Detection of the separated dyes could be achieved with surface‐enhanced Raman spectroscopy.  相似文献   

12.
Herein, we report the design and synthesis of a block copolymer (BCP) with a high Flory–Huggins interaction parameter to access 10 nm feature sizes for potential lithographic applications. The investigated BCP is poly[(2‐methyl‐2‐oxazoline)‐block‐styrene] (PMeOx‐b‐PS), where the PMeOx segment functions as a hydrophilic segment. Two BCPs with different molecular weights were prepared using PMeOx as macroinitiator for copper(0) mediated controlled radical polymerization. The thin film self‐assembly of the obtained PMeOx‐b‐PS was performed by solvent annealing and investigated by atomic force microscopy. Both polymers formed PMeOx cylinders in a PS matrix with an average cylinder diameter of 10.5 nm. Additionally, the ability of the PMeOx domains to selectively degrade under ultraviolet irradiation was explored. It was shown that scission of the PMeOx block does occur selectively, and furthermore that the degraded domains can be removed while leaving the PS matrix intact. By combining synthetic accessibility, small feature sizes, and a selectively cleavable domain, this new BCP system holds significant promise as a lithographic mask for patterning surfaces with high precision. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1349–1357  相似文献   

13.
A simple synthetic route was used for the synthesis of a novel series of alternating copolymers based on substituted 2,7‐distyrylfluorene bridged through alkylene chains. First, 2,7‐dibromofluorene was reacted with 2 equiv of butyllithium, and this was followed by a treatment with 1 equiv of α,ω‐dibromoalkane to yield the intermediate, poly(2,7‐dibromofluorene‐9,9‐diyl‐alt‐alkane‐α,ω‐diyl). ( 1 ) Heck coupling of the latter with 1‐tert‐butyl‐4‐vinylbenzene afforded the target, poly[2,7‐bis(4‐tert‐butylstyryl)fluorene‐9,9‐diyl‐alt‐alkane‐α,ω‐diyl] ( 2 ). The two versions of 2 ( 2a and 2b which have hexane and decane, respectively, as alkane groups) were readily soluble in common organic solvents. Their glass‐transition temperature was relatively low (52 and 87 °C). An intense blue photoluminescence emission with maxima at about 408 and 409 nm was observed in tetrahydrofuran solutions, whereas thin films exhibited an orange emission with maxima at 569 and 588 nm. Very large redshifts of the photoluminescence maxima and Stokes shifts in thin films indicated strong aggregation in the solid state. Both polymers oxidized and reduced irreversibly. Single‐layer light‐emitting diodes with hole‐injecting indium tin oxide and electron‐injecting aluminum electrodes were fabricated. They emitted orange light with external electroluminescence efficiencies of 0.52 and 0.36% photon/electron, as determined in light‐emitting diodes made of 2a and 2b , with alkylenes of (CH2)6 and (CH2)10, respectively. An increase in the external electroluminescence efficiency up to 1.5% was reached in light‐emitting diodes made of polymer blends consisting of 2a and poly(9,9‐dihexadecylfluorene‐2,7‐diyl), which emitted blue‐white light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 809–821, 2007.  相似文献   

14.
A series of poly(cyclohexylethylene‐b‐ethylene‐co‐ethylethylene) (C‐E/EE) diblock copolymers containing approximately 50% by volume glassy C blocks and varying fraction (x) of EE repeat units, 0.07 ≤ x ≤ 0.90, was synthesized by anionic polymerization and catalytic hydrogenation. The effects of ethyl branch content on the melt state segment–segment (χ) interaction parameter and soft (E/EE) block crystallinity were studied. The percent crystallinity ranged from approximately 30% at x = 0.07 to 0% at about x ≥ 0.30, while the melting temperature changed from 101 °C at x = 0.07 to 44 °C at x = 0.28. Dynamic mechanical spectroscopy was employed to determine the order–disorder transition (ODT) temperatures, from which χ was calculated assuming the mean‐field prediction (χNn)ODT = 10.5. Previously published results for the temperature dependent binary interaction parameters for C‐E (x = 0.07), C‐EE (x = 0.90), and E‐EE (x = 0.07 and x = 0.90) fail to account for the quantitative x dependence of χ, based on a simple binary interaction model. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 566–574, 2010  相似文献   

15.
Ambient‐temperature sodium–sulfur (Na–S) batteries are considered a promising energy storage system due to their high theoretical energy density and low costs. However, great challenges remain in achieving a high rechargeable capacity and long cycle life. Herein we report a stable quasi‐solid‐state Na‐S battery enabled by a poly(S‐pentaerythritol tetraacrylate (PETEA))‐based cathode and a (PETEA‐tris[2‐(acryloyloxy)ethyl] isocyanurate (THEICTA))‐based gel polymer electrolyte. The polymeric sulfur electrode strongly anchors sulfur through chemical binding and inhibits the shuttle effect. Meanwhile, the in situ formed polymer electrolyte with high ionic conductivity and enhanced safety successfully stabilizes the Na anode/electrolyte interface, and simultaneously immobilizes soluble Na polysulfides. The as‐developed quasi‐solid‐state Na‐S cells exhibit a high reversible capacity of 877 mA h g?1 at 0.1 C and an extended cycling stability.  相似文献   

16.
We have investigated the morphology and packing manner of graft copolymers consisting of rigid‐rod‐like poly(γ‐benzyl L ‐glutamate) (PBLG) main chains and grafted diblock copolymers of amorphous poly(propylene glycol) (PPG) and crystalline poly(ethylene glycol) (PEG). The results of differential scanning calorimetry and wide‐angle X‐ray scattering measurements for graft copolymers with higher side‐chain volume fractions suggest that the rodlike main chains and crystallized PEG chains exist in segregated domains. Small‐angle X‐ray scattering profiles for these samples show diffraction intensity maxima accompanied by higher order peaks, the positions of which suggest the formation of an ordered layered structure. From these observations, the graft copolymers are estimated to form repeated layered structure consisting of segregated PBLG, PPG, and PEG layers. A proposed model for molecular packing of the graft copolymers is consistent with the experimental observation that the repeating distance for the layered structure decreases with an increase in the volume fraction of side chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1904–1912, 2002  相似文献   

17.
Random copolymers of poly(9,9‐di‐n‐octylfluorene) (PF8) incorporating 0, 8, 12, 15, and 20% dibenzothiophene (DBT), and copolymers with 2, 5, 8, 12, and 15% dibenzothiophene‐S,S‐dioxide (S‐unit) were synthesised. Absorption and emission spectra of thin films indicate that the DBT system shows a linear decrease of toluene vapour induced β phase with increasing DBT content to a 20% cutoff, whilst in the S‐unit copolymers the β phase is present up to 12% co‐monomer content, and at 15% the characteristic absorption peak is absent or masked. These results demonstrate the limits, in thin films, at which the β phase can be formed in widely used PF8 copolymer systems for device applications and clearly show that it is practical to use copolymers having electron or hole transport units in the polyfluorene backbone and still be able to form efficient β phase emission sites.

  相似文献   


18.
In a previous article, we presented a simple modification of the traditional Flory–Huggins theory that took intramolecular screening effects (or same chain contacts) into account. In this article, we present a natural extension of that work, in which free‐volume effects are also explained with an equation‐of‐state model. The predictions of the interaction parameter, χ, for several polymer–solvent systems are presented, over the entire concentration range, in θ solvents and good solvents. A geometric mean assumption is applied to the calculation of an exchange energy interaction term. The predictions of χ are successful to various degrees when internal pressures are used, whereas the use of solubility parameters in most cases produces fairly good agreement with experimental results. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2911–2922, 2003  相似文献   

19.
Differential vapor pressures were measured for mixtures of two cyclic polymethylene ester oligomers in p‐dioxane and chloroform at 25, 30, 35, and 40 °C at five different concentrations ranging from 1 to 20 wt %. The Flory–Huggins interaction parameter (χ) as well as Leonard's interaction parameter (χ′) for flexible and semiflexible rings were calculated and compared to one another. A new method for the estimation of the number of segments of a cyclic polymer is proposed that allows Leonard's equations to be applied correctly to a particular cyclic compound. Consistent differences between χ and χ′ were observed for all studied mixtures, and the differences became smaller if the cyclic oligomers were considered semiflexible. Interestingly, the enthalpic parameter (κ) deduced from values of χ and χ′ did not differ within their uncertainties. This supports the prediction that mixing cyclic polymer compared to its linear counterpart is mainly due to a molecular configurational entropy difference and that this difference should become less pronounced as the cyclic compound becomes larger. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 443–455, 2000  相似文献   

20.
pH‐sensitive poly(acrylamide‐co‐itaconic acid) [P(AAm/IA)] hydrogels were prepared by radiation induced copolymerization of acrylamide (AAm) and itaconic acid (IA) at various ratios. Swelling and shrinking behaviors of these hydrogels were found greatly dependent on the composition of the hydrogel and pH of the buffer solution. The basic structural parameters of the P(AAm/IA) networks such as the molecular weight between crosslinks (M c) and polymer–solvent interaction parameter (χ) were also determined using the modified Flory‐Rehner equations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2586–2594, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号