首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene/styrene copolymerizations using Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* (C5Me5, 1 ), 1,2,4‐Me3C5H2 ( 2 ), tert‐BuC5H4 ( 3 )]‐MAO catalyst systems were explored under various conditions. Complexes 2 and 3 exhibited both high catalytic activities (activity: 504–6810 kg‐polymer/mol‐Ti h) and efficient styrene incorporations at 25, 40°C (ethylene 6 atm), affording relatively high molecular weight poly (ethylene‐co‐styrene)s with unimodal molecular weight distributions as well as with uniform styrene distributions (Mw = 6.12–13.6 × 104, Mw/Mn = 1.50–1.71, styrene 31.7–51.9 mol %). By‐productions of syndiotactic polystyrene (SPS) were observed, when the copolymerizations by 1 – 3 ‐MAO catalyst systems were performed at 55, 70 °C (ethylene 6 atm, SPS 9.0–68.9 wt %); the ratios of the copolymer/SPS were affected by the polymerization temperature, the [styrene]/[ethylene] feed molar ratios in the reaction mixture, and by both the cyclopentadienyl fragment (Cp′) and anionic ancillary donor ligand (L) in Cp′TiCl2(L) (L = Cl, O‐2,6‐iPr2C6H3 or N=CtBu2) employed. Co‐presence of the catalytically‐active species for both the copolymerization and the homopolymerization was thus suggested even in the presence of ethylene; the ratios were influenced by various factors (catalyst precursors, temperature, styrene/ethylene feed molar ratio, etc.). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4162–4174, 2008  相似文献   

2.
An equimolar mixture of Cp*Ti(CH3)3 (2) and Ph3C+[B(C6F5)4]? (1) forms a highly active and syndioselective catalyst for the polymerization of styrene, producing 96% syndiotactic polystyrene (PS) at an activity of 0.91 × 107 g PS (mol Ti)?1 (mol styrene)?1 h?1. Both activity and syndioselectivity can be increased using tri–isobutylaluminum (TIBA) to scavenge the system. ESR measurements indicate that the polymerization proceeds via titanium(IV) intermediates. Catalysts derived from 2/methylaluminoxane (MAO) as well as Cp*TiCl3/MAO also function as syndioselective styrene polymerization catalysts, but are less active than the ‘cationic’; system derived from 1 and 2.  相似文献   

3.
A series of monocyclopentadienyl titanium complexes containing a pendant amine donor on a Cp group ( A = CpTiCl3, B = CpNTiCl3, C = CpNTiCl2TEMPO, for Cp = C5H5, CpN = C5H4CH2CH2N(CH3)2, and TEMPO = 2,2,6,6‐tetramethylpiperidine‐N‐oxyl) are investigated for styrene homopolymerization and ethylene–styrene (ES) copolymerization. When activated by methylaluminoxane at 70 °C, complexes with the amine group ( B and C ) are active for styrene homopolymerization and afford syndiotactic polystyrene (sPS). The copolymerizations of ethylene and styrene with B and C yield high‐molecular weight ES copolymer, whereas complex A yields mixtures of sPS and polyethylene, revealing the critical role that the pendant amine has on the polymerization behavior of the complexes. Fractionation, NMR, and DSC analyses of the ES copolymers generated from B and C suggest that they contain sPS. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1579–1585, 2010  相似文献   

4.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

5.
Half‐sandwich (pentamethylcyclopentadienyl)(triflato)titanium(IV) complexes of the type [Ti(Cp*)(TfO)2X] (X=MeO ( 1 ), Me ( 2 ), 2,4,6‐Me3C6H2O ( 5 )) or [Ti(Cp*)(o‐OC6H4O)(TfO)] ( 7 ) were readily synthesized via methathesis of the corresponding chloride complexes with silver triflate (Cp*=(η5‐1,2,3,4,5‐pentamethylcyclopenta‐2,4‐dien‐1‐yl)). In addition, the complex 3 with X=OH was prepared by controlled hydrolysis of 2 . The solid‐state structures of these new complexes were determined by single‐crystal X‐ray‐diffraction techniques. Three different structural motifs were identified; 1, 2, 3 , and 7 are dimeric, while 5 is monomeric. The complexes were screened for their ability to stereospecifically polymerize styrene under homogeneous conditions. In the absence of activators, such as MAO (methylaluminoxane), 1 and 2 readily catalyzed the formation of atactic polystyrene; a strong dependence on the steric size of X was noted. In the presence of MAO, all of the complexes showed high activity and strong preference for the synthesis of syndiotactic polystyrene that was superior to that of [TiCl3(Cp*)]/MAO.  相似文献   

6.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

7.
An efficient introduction of aromatic vinyl group into syndiotactic polystyrene has been achieved by incorporation of 3,3′‐divinylbiphenyl, p‐divinylbenzene (DVB) in syndiospecific styrene polymerization using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) (Cp′ = tBuC5H4, 1,2,4‐Me3C5H2), in the presence of MAO. The resultant polymers possessed high molecular weights with uniform molecular weight distributions, and the DVB contents could be varied by the initial feed molar ratios (6–23 mol %) without decrease in the Mn values. The syndiotactic stereo‐regularity and presence of the vinyl groups were confirmed by NMR spectra. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1902–1907  相似文献   

8.
An efficient introduction of vinyl group into poly (ethylene‐co‐styrene) or poly(ethylene‐co?1‐hexene) has been achieved by the incorporation of 3,3′‐divinylbiphenyl (DVBP) in terpolymerization of ethylene, styrene, or 1‐hexene with DVBP using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O?2,6‐iPr2C6H3) [Cp′ = Cp*, tBuC5H4, 1,2,4‐Me3C5H2], in the presence of MAO cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions. Efficient comonomer incorporations have been achieved by these catalysts, and the content of each comonomer could be varied by its initial concentration charged. The postpolymerization of styrene was initiated from the vinyl group remained in the side chain by treatment with n‐BuLi. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2581–2587  相似文献   

9.
The reactions of [Cp*2Ti(η2‐Me3SiC2SiMe3)] (Cp*=η5‐pentamethylcyclopentadienyl) with various dicyano compounds were investigated. Nitrile–nitrile C? C couplings result in multinuclear complexes owing to the bifunctionality of the substrates. Applying 1,3‐ or 1,4‐dicyanobenzene led to tri‐ and tetranuclear complexes of the rare 1‐metalla‐2,5‐diaza‐cyclopenta‐2,4‐dienes. These are potential catalysts and were tested in the ring‐opening polymerization of ε‐caprolactone. The reaction with adiponitrile as alkyl dinitrile afforded a trinuclear 1‐metalla‐2,5‐diaza‐cyclopent‐3‐ene through additional protonation of the nitrogen atoms. The structure and bonding of the products were investigated by X‐ray crystallography and DFT analysis to understand the molecular organization in the macrocycles.  相似文献   

10.
Using 13C- and 1H-NMR spectroscopy, titanium(IV) species formed in the catalytic systems Cp*TiMe3/MAO and Cp*TiCl3/MAO (Cp*=C5(CH3)5) in toluene and chlorobenzene were studied within the temperature range 253-293 K and at Al/Ti ratios 30-300. It was shown that upon activation of Cp*TiMe3 with methylaluminoxane (MAO) mainly the ‘cation-like’ intermediate Cp*Me2Ti+←MeAl(MAO) (2) is formed. Three types of titanium(IV) complexes were identified in Cp*TiCl3/MAO catalytic system. They are methylated complexes Cp*TiMeCl2 and Cp*TiMe2Cl, and the ‘cation-like’ intermediate 2. Complex 2 dominates in Cp*TiCl3/MAO system in conditions approaching to those of practical polymerization (Al/Ti ratios more than 200). According to the EPR measurements, the portion of EPR active Ti(III) species in the Cp*TiCl3/MAO system is smaller than 1% at Al/Ti=35, and is about 10% at Al/Ti=700.  相似文献   

11.
Mg(n‐Bu){η2‐HC[C(Me)NMes]2} ( 2 ) (Mes = mesityl, 2,4,6‐Me3C6H2), a new β‐diketiminate‐supported magnesium alkyl, has been synthesized and structurally characterized. The X‐ray analysis of the lanthanum half‐sandwich complex Cp*La(BH4)2(THF)2 ( 1 ) (Cp* = pentamethylcyclopentadienyl; THF = tetrahydrofuran) is also reported. Complex 2 has been assessed as both alkylating agent and chain transfer agent for the lanthanum‐catalysed polymerization and coordinative chain transfer polymerization of isoprene and styrene using 1 as the pre‐catalyst. The results are compared with those for n‐butylethylmagnesium (BEM) which is traditionally used for this purpose. The 1,4‐trans stereospecific polymerization of isoprene shows a more controlled character using 2 versus BEM, and higher activities are observed for the chain transfer polymerization of styrene when 2 is used as chain transfer agent. The activity is in turn lower than that observed using BEM when 1 equiv. of magnesium compound is used for the polymerization of styrene. The combination of 1 , 2 and Al(i‐Bu)3 leads finally to a 1,4‐trans stereoselective coordinative chain transfer polymerization of isoprene, in a similar way to BEM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis of a series of ansa‐titanocene dichlorides [Cp′2TiCl2] (Cp′=bridged η5‐tetramethylcyclopentadienyl) and the corresponding titanocene bis(trimethylsilyl)acetylene complexes [Cp′2Ti(η2‐Me3SiC2SiMe3)] is described. The ethanediyl‐bridged complexes [C2H4(C5Me4)2TiCl2] ( 2 ‐Cl2) and [C2H4(C5Me4)2Ti(η2‐Me3SiC2SiMe3)] ( 2‐ btmsa; btmsa=η2‐Me3SiC2SiMe3) can be obtained from the hitherto unknown calcocenophane complex [C2H4(C5Me4)2Ca(THF)2] ( 1 ). Furthermore, a heterodiatomic bridging unit containing both, a dimethylsilyl and a methylene group was introduced to yield the ansa‐titanocene dichloride [Me2SiCH2(C5Me4)2TiCl2] ( 3 ‐Cl2) and the bis(trimethylsilyl)acetylene complex [Me2SiCH2(C5Me4)2Ti(η2‐Me3SiC2SiMe3)] ( 3 ‐btmsa). Besides, tetramethyldisilyl‐ and dimethylsilyl‐bridged metallocene complexes (structural motif 4 and 5 , respectively) were prepared. All ansa‐titanocene alkyne complexes were reacted with stoichiometric amounts of water; the hydrolysis products were isolated as model complexes for the investigation of the elemental steps of overall water splitting. Compounds 1 , 2 ‐btmsa, 2 ‐(OH)2, 3 ‐Cl2, 3 ‐btmsa, 4 ‐(OH)2, 3 ‐alkenyl and 5 ‐alkenyl were characterised by X‐ray diffraction analysis.  相似文献   

13.
Die Reaktion von [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) mit MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) führt über eine NHC‐induzierte Phosphorkationen‐Abstraktion zum Ringkontraktionsprodukt [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), welches das erste Beispiel eines anionischen CoP3‐Komplexes repräsentiert. Solche von NHCs induzierten Ringkontraktionsreaktionen lassen sich ebenfalls auf Tripeldecker‐Sandwich‐Komplexe anwenden. So werden die Komplexe [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) zu den Komplexen [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ) transformiert, wobei 4 b das erste strukturell charakterisierte Beispiel eines NHC‐substituierten AsI‐Kations darstellt. Darüber hinaus führt die Reaktion des Vanadium‐Komplexes [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) mit MeNHC zur Bildung der neuartigen Komplexe [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) bzw. [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

14.
Aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* ( 1 ), tBuC5H4 ( 2 )], catalyze terpolymerization of ethylene and styrene with α‐olefin (1‐hexene and 1‐decene) efficiently in the presence of cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions (compositions). Efficient comonomer incorporations have been achieved by these catalysts. The content of each comonomer (α‐olefin, styrene, etc.) could be controlled by varying the comonomer concentration charged, and resonances ascribed to styrene and α‐olefin repeated insertion were negligible. The terpolymerization with p‐methylstyrene (p‐MS) in place of styrene also proceeded in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3 cocatalyst, and p‐MS was incorporated in an efficient matter, affording high‐molecular‐weight polymers with uniform molecular weight distributions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2565–2574  相似文献   

15.
A series of rare‐earth‐metal–hydrocarbyl complexes bearing N‐type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH2SiMe3)3(thf)2] with equimolar amount of the electron‐donating aminophenyl‐Cp ligand C5Me4H‐C6H4o‐NMe2 afforded the corresponding binuclear monoalkyl complex [({C5Me4‐C6H4o‐NMe(μ‐CH2)}Y{CH2SiMe3})2] ( 1 a ) via alkyl abstraction and C? H activation of the NMe2 group. The lutetium bis(allyl) complex [(C5Me4‐C6H4o‐NMe2)Lu(η3‐C3H5)2] ( 2 b ), which contained an electron‐donating aminophenyl‐Cp ligand, was isolated from the sequential metathesis reactions of LuCl3 with (C5Me4‐C6H4o‐NMe2)Li (1 equiv) and C3H5MgCl (2 equiv). Following a similar procedure, the yttrium‐ and scandium–bis(allyl) complexes, [(C5Me4‐C5H4N)Ln(η3‐C3H5)2] (Ln=Y ( 3 a ), Sc ( 3 b )), which also contained electron‐withdrawing pyridyl‐Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl‐Flu ligand (C13H9‐C5H4N) by [Ln(CH2SiMe3)3(thf)2] generated the rare‐earth‐metal–dialkyl complexes, [(η3‐C13H8‐C5H4N)Ln(CH2SiMe3)2(thf)] (Ln=Y ( 4 a ), Sc ( 4 b ), Lu ( 4 c )), in which an unusual asymmetric η3‐allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium–trisalkyl complex [Y(CH2C6H4o‐NMe2)3], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η3‐C13H8‐C5H4N)Y(CH2C6H4o‐NMe2)2] ( 5 ). Complexes 1 – 5 were fully characterized by 1H and 13C NMR and X‐ray spectroscopy, and by elemental analysis. In the presence of both [Ph3C][B(C6F5)4] and AliBu3, the electron‐donating aminophenyl‐Cp‐based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph3C][B(C6F5)4] only, the electron‐withdrawing pyridyl‐Cp‐based complexes 3 , in particular scandium complex 3 b , exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99 %) polystyrene, whereas their bulky pyridyl‐Flu analogues ( 4 and 5 ) in combination with [Ph3C][B(C6F5)4] and AliBu3 displayed much‐lower activity to afford syndiotactic‐enriched polystyrene.  相似文献   

16.
A series of N‐(2‐benzimidazolyquinolin‐8‐yl)benzamidate half‐titanocene chlorides, Cp′TiLCl ( C1 – C8 : Cp′ = C5H5, MeC5H4, or C5Me5; L = N‐(benzimidazolyquinolin‐8‐yl)benzamides)), was synthesized by the KCl elimination reaction of half‐titanocene trichlorides with the correspondent potassium N‐(2‐benzimidazolyquinolin‐8‐yl)benzamide. These half‐titanocene complexes were fully characterized by elemental and NMR analyses, and the molecular structures of complexes C2 and C8 were determined by the single‐crystal X‐ray diffraction. The high stability of the pentamethylcyclopentadienyl complex ( C8 ) was evident by no decomposing nature of its solution in air for one week. The oxo‐bridged dimeric complex ( C9 ) was isolated from the solution of the corresponding cyclopentadienyl complex ( C3 ) solution in air. Complexes C1 – C8 exhibited good to high catalytic activities toward ethylene polymerization and ethylene/α‐olefin copolymerization in the presence of methylaluminoxane (MAO) cocatalyst. In the typical catalytic system of C1/ MAO, the polymerization productivities were enhanced with either elevating reaction temperature or increasing the ratio of MAO to titanium precursor. In general, it was observed that higher the catalytic activity of the catalytic system lower the molecular weight of polyethylene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3154–3169, 2009  相似文献   

17.
Ethene was co- and terpolymerized with 1-octene and styrene using the methylalumoxane (MAO) activated halfsandwich metallocene Me2Si(Me4Cp)(N-t.-butyl)TiCl2(Cp = cyclopentadienyl, Me = methyl) as catalyst. At temperatures of 40 and 60°C styrene concentration was varied in order to investigate the influence of the comonomers. Despite decreasing the overall activity with respect to ethene/1-octene copolymerization, polymerization activity was found to exibit a relative maximum with increasing styrene concentration. An explanation is given taking two different comonomer effects into account. Low styrene concentration promoted higher 1-octene incorporation compared to ethene/1-octene copolymerization but significantly lowered the molecular weight of the terpolymers. With constant ethene and 1-octene concentration it was possible to produce ethene/1-octene/styrene terpolymers with styrene content varying from 0 to 25 mol % and 1-octene content varying from 8 to 21 mol %. All terpolymers were amorphous. With constant ethene content it was found possible to vary their glass transition temperature with 1-octene/styrene molar ratio incorporated in the terpolymer. 13C-NMR spectroscopic microstructure analysis showed that no styrene/1-octene sequences were found in the terpolymer backbone. Furthermore terpolymerizations were conducted successfully incorporating norbornene, 1,5-hexadiene and propene as monomers in terpolymertization with ethene and styrene. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2549–2560, 1997  相似文献   

18.
Ethylene homopolymerizations and copolymerizations were catalyzed by zirconocene catalysts entrapped inside functionalized montmorillonites that had been rendered organophilic via the ion exchange of the interlamellar cations of layered montmorillonite with hydrochlorides of L ‐amino acids (AAH+Cl?) or their methyl esters (MeAAH+Cl?), with or without the further addition of hexadecyltrimethylammonium bromide (C16H33N+Me3Br?; R4N+Br?). In contrast to the homogeneous Cp2ZrCl2/methylaluminoxane catalyst for ethylene homopolymerizations and copolymerizations with 1‐octene, the intercalated Cp2ZrCl2 activated by methylaluminoxane for ethylene homopolymerizations and copolymerizations with 1‐octene proved to be more effective in the synthesis of polyethylenes with controlled molecular weights, chemical compositions and structures, and properties, including the bulk density. The effects of the properties of the organic guests on the preparation and catalytic performance of the intercalated zirconocene catalysts were studied. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2187–2196, 2003  相似文献   

19.
Ethene was copolymerized with styrene using five different methylalumoxane (MAO) activated half-sandwich complexes of the general formula Me2Si(Cp)(N R)MCl2, varying the substituents on the cyclopentadienyl ring and the substituent on the amide (Cp = tetramethylcyclopentadiene CBT , 1-indenyl IBT , 3-trimethylsilyl-1-indenyl SIBT , or fluorenyl FBZ , R = tert-butyl (complexes CBT, IBT, SIBT, FBZ ) or benzyl CAT ), as well as the metal center (M = Ti, except FBZ : M = Zr). Polymerization behavior was analyzed with respect to catalyst activity and polymerization kinetics, styrene incorporation, copolymer microstructure, and molecular weight. All complexes produced random poly(ethene-co-styrene) without any regioregular or stereoregular microstructure. Complex CBT showed the highest catalytic activity, the fluorenyl-substituted complex FBZ produced the highest molecular weight polymer, and complexes SIBT and CAT promoted high styrene incorporation. Cp-substitution pattern influenced deactivation of the catalytic system with bulky substituents of the Cp-ring slowing down deactivation at the expense of styrene incorporation. Moreover, deactivation was accelerated with increasing styrene concentration. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1571–1578, 1997  相似文献   

20.
Polymerization of styrene using β‐diketiminate nickel (II) bromide complexes CH{C(R)NAr}2NiBr (R = CH3, Ar = 2,6‐iPr2C6H3, 1 ; R = CH3, Ar = 2,6‐Me2C6H3, 2 ; R = CF3, Ar = 2,6‐iPr2C6H3, 3 ; R = CF3, Ar = 2,6‐Me2C6H3, 4 ) in the presence of methylaluminoxane was studied. Compound 3 is the most active styrene polymerization catalyst of all the nickel complexes tested. The activity of these catalysts increases with increases in steric bulk of the substituents on the aryl rings. The electronic nature of the ligand backbone also affects the activity. Weight‐average molecular weight of the prepared polystyrene ranges from 21 000 to 72 000, with polydispersity indexes of 1.95–2.78. The microstructure of the obtained products is atactic polystyrenes from NMR analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号