共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
K. C. Nicolaou Scott A. Snyder Tamsyn Montagnon Georgios Vassilikogiannakis 《Angewandte Chemie (International ed. in English)》2002,41(10):1668-1698
The Diels–Alder reaction has both enabled and shaped the art and science of total synthesis over the last few decades to an extent which, arguably, has yet to be eclipsed by any other transformation in the current synthetic repertoire. With myriad applications of this magnificent pericyclic reaction, often as a crucial element in elegant and programmed cascade sequences facilitating complex molecule construction, the Diels–Alder cycloaddition has afforded numerous and unparalleled solutions to a diverse range of synthetic puzzles provided by nature in the form of natural products. In celebration of the 100th anniversary of Alder's birth, selected examples of the awesome power of the reaction he helped to discover are discussed in this review in the context of total synthesis to illustrate its overall versatility and underscore its vast potential which has yet to be fully realized. 相似文献
9.
Dr. Jacques‐Alexis Funel Dr. Stefan Abele 《Angewandte Chemie (International ed. in English)》2013,52(14):3822-3863
The Diels–Alder reaction is one of the most popular transformations for organic chemists to generate molecular complexity efficiently. Surprisingly, little is known about its industrial application for the synthesis of pharmacologically active ingredients, agrochemicals, and flavors and fragrances. This Review highlights selected examples, with a focus on large‐scale applications (>1 kg) from a process research and development perspective. 相似文献
10.
11.
12.
Florian L. Geyer Alexander Rode Prof. Uwe H. F. Bunz 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(50):16448-16453
A series of ethynylated silanes, including tetraethynylsilane, was treated with tetraphenylcyclopentadienone at 300 °C under microwave irradiation to give the aromatized Diels–Alder adducts as sterically encumbered mini‐dendrimers with up to 20 benzene rings. The sterically most congested adducts display red‐shifted emission through intramolecular π–π interactions in the excited state. 相似文献
13.
14.
Dr. Pablo A. Denis 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(46):15719-15725
Herein, by using dispersion‐corrected density functional theory, we investigated the Diels–Alder chemistry of pristine and defective graphene. Three dienes were considered, namely 2,3‐dimethoxy‐1,3‐butadiene (DMBD), 9‐methylanthracene (9MA), and 9,10‐dimethylanthracene (910DMA). The dienophiles that were assayed were tetracyanoethylene (TCNE) and maleic anhydride (MA). When pristine graphene acted as the dienophile, we found that the cycloaddition products were 47–63 kcal mol?1 less stable than the reactants, thus making the reaction very difficult. The presence of Stone–Wales translocations, 585 double vacancies, or 555‐777 reconstructed double vacancies did not significantly improve the reactivity because the cycloaddition products were still located at higher energy than the reactants. However, for the addition of 910DMA to single vacancies, the product showed comparable stability to the separated reactants, whereas for unsaturated armchair edges the reaction was extremely favorable. With regards the reactions with dienophiles, for TCNE, the cycloaddition product was metastable. In the case of MA, we observed a reaction product that was less stable than the reactants by 50 kcal mol?1. For the reactions between graphene as a diene and the dienophiles, we found that the most‐promising defects were single vacancies and unsaturated armchair edges, because the other three defects were much‐less reactive. Thus, we conclude that the reactions with these above‐mentioned dienes may proceed on pristine or defective sheets with heating, despite being endergonic. The same statement also applies to the dienophile maleic anhydride. However, for TCNE, the reaction is only likely to occur onto single vacancies or unsaturated armchair edges. We conclude that the dienophile character of graphene is slightly stronger than its behavior as a diene. 相似文献
15.
16.
17.
18.
19.