首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel co-precipitation and annealing route to the large-quantity synthesis of boron nitride nanotubes (BNNTs), using amorphous boron powder, iron nitrate nonahydrate (Fe(NO3)3·9H2O) and urea (CO(NH2)2) as the raw materials, was demonstrated. An intermediate Fe(OH)3·B was firstly prepared through a co-precipitation process and then annealed in flowing ammonia atmosphere at 1200 °C. It was found that the heat treatment at 800 °C during the annealing process could favor the growth of BNNTs. The BNNTs had an average diameter of 70 nm and possessed bamboo and quasi-cylindrical structures. The annealing temperature greatly affected the formation of BNNTs. Only BN particles could be obtained at lower temperature (e.g. 1100 °C), whereas thorn-like nanosheet-decorated BNNTs were fabricated at higher temperature (e.g. 1300 °C). A combination mechanism of solid–liquid–solid (SLS) and vapor–liquid–solid (VLS) model was suggested to be responsible for the growth of BNNTs.  相似文献   

2.
Benzene adsorption behavior in a large family of 12R window zeolites (X, Y, EMT, Beta and LTL) has been examined by means of in-situ FTIR spectroscopy and correlated with the zeolite structure, the type and number of counter-ions, and the negative charge on framework oxygen atoms of zeolites. The effect of coadsorption of HCl, NH3 and CH3NH2 on the benzene location has also been studied. The present work illustrates that besides the benzene adsorption on counter ions of zeolites, the 12R windows could also be the adsorption sites for benzene. Upon adsorption of coadsorbates such as HCl, NH3 and CH3NH2, the migration of preadsorbed benzene molecules from one type of adsorption sites towards another, i.e. from 12R windows towards the cations for HCl and opposite direction for NH3 and CH3NH2, has been evidenced. The lack of adsorption of benzene on 12R windows of NaBeta even upon coadsorption of a series of basic molecules reveals that benzene adsorption on 12R windows is most likely governed by a molecular recognition effect where benzene molecule and 12R window should have the adapted chemical and structural properties like in enzyme-substrate system and zeolites can be referred to as solid enzymes or zeo-enzymes. This paper indicates also that the adsorption properties of zeolites can be modified and accommodated by introduction of a co-adsorbate.  相似文献   

3.
We have investigated, on the basis of density functional theory calculations, the structural and electronic properties of chemical modification of pristine and Na-doped MgONTs with NH3 and H2O molecules. We found that the NH3 and H2O molecules can be barrierlessly adsorbed on the Mg atom of the tube sidewall along with a charge transfer from the adsorbate to MgONT. The adsorption is chemical in nature with adsorption energies about ?22.3 and ?21.5 kcal/mol for H2O and NH3, respectively. The calculated density of state (DOS) shows that the chemical modification of MgONTs with these molecules can be generally classified as certain type of “harmless modification.” In other words, the electronic properties of the MgONT are little changed by the adsorption processes. The substitution of an Mg atom in the tube surface with an Na atom results in a semi-insulator to p-type semiconductor transition based on DOS analysis. It was also found that the doping process reduces the adsorption energies and the electronic properties of Na-doped MgONT is slightly more sensitive toward NH3 and H2O molecules, compared with the pristine one.  相似文献   

4.
Methods of chemical, thermal, IR spectral, and X-ray phase analysis were used to study the effect of ammonium additives NH4Cl + NH4NO3 introduced into a phosphorus-nitrogen formulation on the thermal decomposition of impregnated wood in the temperature range 20–700°C and on adsorption characteristics of the resulting activated carbon.  相似文献   

5.
We evaluated the ability of CO2 adsorption in functionalized activated carbons granular and monolithic type, obtained by chemical activation of African palm stone with H3PO4 and CaCl2. We made a comparison between two methods of incorporation of nitrogen groups: the impregnation method with NH4OH solution and NH3 gasification. The materials were texturally characterized by N2 adsorption at 77 K, the isotherms shows obtaining microporous materials with surface areas between 545–1425 m2?g?1 and pore volumes between 0.22 to 0.53 cm3?g?1. It was established that with the methodologies used for functionalization is increased content of nitrogen groups, was achieved a higher proportion of such groups when carrying out the process in liquid phase with NH4OH. The incorporation of nitrogen groups in the material generates an increase of up to 65 % in the CO2 adsorption capacity of the MCa2 (Monolith prepared with CaCl2 solution at 2 %) sample. Was reached a maximum adsorption capacity of 344 mgCO2?g?1 in the MCa2FAL (sample MCa2 functionalized with NH4OH solution) sample.  相似文献   

6.
Adsorption properties of amine-functionalized mesoporous silica NH2-SBA-15, zeolite-like imidazole framework ZIF-8, and amine-functionalized metal-organic polymer NH2-MIL-53 have been investigated. Non-modified mesoporous adsorbent SBA-15 has a higher sorption capacity for CO2 than microporous ZIF-8, although microporous sample is characterized by a larger surface area and the values of total pore volume are close. When amine groups are present on the surface of the adsorbents, the chemical adsorption contributes more then the physical one. The adsorption capacity increases with increasing concentration of the functional groups which, in its turn, correlates with adsorbent surface area. Among the studied samples, the best adsorption properties demonstrate amine-functionalized adsorbents, aminefunctionalized mesoporous silica NH2-SBA-15, and amine-functionalized metal-organic polymer NH2-MIL-53.  相似文献   

7.
In this work, first‐principles density functional theory (DFT) is used to predict oxygen adsorption on two types of hybrid carbon and boron‐nitride nanotubes (CBNNTs), zigzag (8,0), and armchair (6,6). Although the chemisorption of O2 on CBNNT(6,6) is calculated to be a thermodynamically unfavorable process, the binding of O2 on CBNNT(8,0) is found to be an exothermic process and can form both chemisorbed and physisorbed complexes. The CBNNT(8,0) has very different O2 adsorption properties compared with pristine carbon nanotubes (CNTs) and boron‐nitride nanotube (BNNTs). For example, O2 chemisorption is significantly enhanced on CBNNTs, and O2 physisorption complexes also show stronger binding, as compared to pristine CNTs or BNNTs. Furthermore, it is found that the O2 adsorption is able to increase the conductivity of CBNNTs. Overall, these properties suggest that the CBNNT hybrid nanotubes may be useful as a gas sensor or as a catalyst for the oxygen reduction reaction. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Adsorption and the electrophysical properties (changes in electrical conductivity) of thin film solid solutions and binary components of the new InSb-CdS system are studied by means of piezoquartz microweighing, IR spectroscopy and probe compensation in the temperature range of 273–353 K and a range of adsorbate gas (NH3, NO2) pressures of 0.2–9.8 Pa. The areas of physical and chemical adsorption accompanied by the charging of the (mostly positive) surface are determined. The mechanisms and regularities of adsorption as a function of external conditions and composition of the system are established, and certain similarities and patterns of changes in the adsorption and electroconductivity, and parallelisms of the “acidbase characteristic-composition,” “adsorption characteristic-composition,” and “electrophysical characteristics-composition” dependences are described. These prove to be useful in studying the adsorption mechanism and in identifying the most active components of the system relative to NH3 and NO2, proposed as materials for respective sensors/detectors.  相似文献   

9.
The most successful electrochemical conversion of ammonia from dinitrogen molecule reported to date is through a Li mediated mechanism. In the framework of the above fact and that Li anchored graphene is an experimentally feasible system, the present work is a computational experiment to identify the potential of Li anchored graphene as a catalyst for N2 to NH3 conversion as a function of (a) minimum number of Li atoms needed for anchoring on graphene sheets and (b) the role of chemical modification of graphene surfaces. The studies bring forth an understanding that Li anchored graphene sheets are potential catalysts for ammonia conversion with preferential adsorption of N2 through end-on configuration on Li atoms anchored on doped and pristine graphene surfaces. This mode of adsorption being characteristic of Nitrogen Reduction Reaction (NRR) through enzymatic pathway, examination of the same followed by analysis of electronic properties demonstrates that tri-Li atoms (Tri Atom Catalysts, TACs) are more efficient as catalysts for NRR as compared to two Li atoms (Di Atom Catalysts, DACs). Either way, the rate determining step was found to be *NH2→*NH3 step (mixed pathway) with ΔGmax=1.02 eV and *NH2−*NH3→*NH2 step (enzymatic pathway) with ΔGmax=1.11 eV for 1B doped TAC and DAC on graphene sheet, respectively. Consequently, this work identifies the viability of Li anchored graphene based 2-D sheets as hetero-atom catalyst for NRR.  相似文献   

10.
11.
Acid‐base properties of metal oxides and polymers can control adhesion properties between materials, electrical properties, the physical structure of the material and gas adsorption behavior. To determine the relationships between surface isoelectric point, chemical composition and aging effects, plasma‐surface treatment of amorphous silicon oxynitride (SiOxNy) substrates was explored using Ar, H2O vapor, and NH3 inductively coupled rf plasmas. Overall, the Ar plasma treatment resulted in nonpermanent changes to the surface properties, whereas the H2O and NH3 plasmas introduced permanent chemical changes to the SiOxNy surfaces. In particular, the H2O plasma treatments resulted in formation of a more ordered SiO2 surface, whereas the NH3 plasma created a nitrogen‐rich surface. The trends in isoelectric point and chemical changes upon aging for one month suggest that contact angle and composition are closely related, whereas the relationship between IEP and composition is not as directly correlated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
利用溶胶-凝胶法,采用三种酸性金属氧化物(氧化铌、氧化钨和氧化钼)对锰铈复合氧化物催化剂进行了改性. 测试了催化剂的氮氧化物选择性催化还原(SCR)活性,以筛选对应不同温度窗口的合适酸性氧化物改性剂. 同时评价了催化剂的NO氧化和NH3氧化活性. 利用X射线衍射、BET比表面积测试、H2程序升温还原、NH3/NOx程序升温脱附和NH3/NOx吸附红外光谱等手段对催化剂进行了表征. MnOx-CeO2催化剂表现出良好的低温(100-150 ℃)活性. 酸性金属氧化物的添加削弱了催化剂的氧化还原特性,从而抑制了NH3的活化和NO2辅助的快速SCR反应. 与此同时,相对高温(250-350 ℃)区NH3的氧化也受到了抑制,B酸和L酸上的NH3吸附得以增强. 因此,催化剂的SCR脱硝温度窗口向高温移动,改性效果Nb2O5 < WO3 < MoO3.  相似文献   

13.
The adsorption and dissociation mechanism of NH2NO2 on the Mg surface have been investigated by the generalized gradient approximation of density functional theory. Calculations employ a supercell (3 × 3 × 3) slab model and three-dimensional periodic boundary conditions. The strong attractive force between oxygen and Mg atoms induces the N–O bond of the NH2NO2 to decompose. The dissociated oxygen atoms and radical fragment of NH2NO2 oxidize readily Mg atoms. The largest adsorption energy is ?860.5 kJ/mol. The largest charge transfer is 3.76 e from surface Mg atoms to fragments of NH2NO2. The energy barriers of N–O bond dissociation are in a range of 11.6–36.5 kJ/mol. The adsorption energy of NH2NO2 on the Mg surface compensates the energy needed for the N–O bond dissociation.  相似文献   

14.
The adsorption of RuCl3 and [Ru/NH3/5Cl]Cl2, [Ru/NH3/6]Cl3, Ru/III/EDTA complexes on polysulfur nitride, /SN/x, has been studied using radioactive103Ru. The values of the surface coverage show stronger in adsorption the [Ru/NH3/5Cl]Cl2 on /SN/x surface than the other studied ruthenium compounds. The perpendicular surfaces of /SN/x crystals are more active relative to the adsorption of the parallel surface.  相似文献   

15.
We have investigated properties of chemically modified boron nitride nanotubes (BNNTs) with NH(3) and four other amino functional groups (NH(2)CH(3), NH(2)CH(2)OCH(3), NH(2)CH(2)COOH, and NH(2)COOH) on the basis of density functional theory calculations. Unlike the case of carbon nanotubes, we found that NH(3) can be chemically adsorbed on top of the boron atom, with a charge transfer from NH(3) to the BNNT. The minimum-energy path calculation shows that a small energy barrier is encountered during the adsorption. Similarly, a small energy barrier (about 0.42 eV) is also involved in the desorption, suggesting that both adsorption and desorption can be realized even at room temperature. For chemically modified BNNTs with various amino functional groups, the adsorption energies are typically less than that of NH(3) on the BNNT. The trend of adsorption-energy change can be correlated with the trend of relative electron-withdrawing or -donating capability of the amino functional groups. Overall, the chemical modification of BNNTs with the amino groups results in little changes in the electronic properties of BNNTs. However, the chemical reactivity of the BNNTs can be enhanced by the chemical modification with the amino group containing -COOH.  相似文献   

16.
The efficient treatment of wastewater containing organic dyes generated in diverse industrial processes has become more crucial owing to increasing environmental concerns. In this paper, we incorporated the aminated functional NH2-MIL-101(Cr) into the porous polyvinylidene fluoride (PVDF) to fabricate the MOFs/polymer hybrid membranes, which combined the surface activity of MOFs and the membrane's filtration plus the adsorption process, and can be used in the high-efficient removal of congo red (CR) from aqueous solution. Two synthesis strategies were employed, and both of which are useful in fabricating the NH2-MIL-101(Cr)@PVDF hybrid membranes. The NH2-MIL-101(Cr) particles are mainly incorporated into the pores of PVDF, and thus enhance the hydrophilicity, water flux as well as porosity of the hybrid membranes. In the adsorption experiments, the influences of various conditions including the solution pH, adsorption time, adsorption isotherms, reusability, and the filtration performances were investigated systematically, and all the hybrid membranes show evidently improved adsorption performances compared to original PVDF films. The adsorption thermal and dynamics analyses indicate that the adsorption process is mainly featured in Langmuir monolayer adsorption and chemical adsorption. The hydrogen bonding at the interface of CR/NH2-MIL-101(Cr) is responsible for the selective adsorption of CR. The excellent reusability and the dynamic adsorption performances determine the potential applications of MOF-based hybrid membranes in the membrane separation of CR from practical waste water.  相似文献   

17.
The oxidation of carbon monoxide (CO) is important for a series of technological and environmental applications. In this work, the catalytic oxidation of CO on Si-doped (6,0) boron nitride nanotubes (BNNTs) is investigated by using density functional theory calculations. Reaction barriers and corresponding thermodynamic parameters were calculated using the M06-2X, B3LYP and wB97XD density functionals with 6-31G* basis set. Our results indicate that a vacancy defect in BNNT strongly stabilizes the Si adatom and makes it more positively charged. This charging enhances the adsorption of reaction gases (O2 and CO) and results in the change of the electronic structure properties of the tube. The calculated barrier of the reaction CO + O2 → CO2 + Oads on Si-doped BNNTs following the Langmuir–Hinshelwood is lower than that on the traditional noble metal catalysts. The second step of the oxidation would be the Eley–Rideal reaction (CO + Oads → CO2) with an energy barrier of about 1.8 and 10.1 kcal/mol at M06-2X/6-31G* level. This suggests that the CO oxidation catalyzed by the Si-doped BNNTs is likely to occur at the room temperature. The results also demonstrate that the activation energies and thermodynamic quantities calculated by M06-2X, B3LYP and wB97XD functionals are consistent with each other.  相似文献   

18.
In the present work, high quality γ‐Mo2N catalysts for ammonia decomposition were successfully synthesized via temperature programmed nitridation of α‐MoO3 nanobelts. The optimal conditions for the synthesis of MoO3 precursors were obtained by using the orthogonal experimental method. The MoO3 precursors and the corresponding fresh and used Mo2N catalysts were characterized by various characterization techniques, including transmission electron microscopy, X‐ray diffraction and N2 adsorption‐desorption. Furthermore, temperature‐ programmed desorption by N2 or NH3 and X‐ray photoelectron spectroscopy analysis were performed to better understand the chemical properties of Mo2N catalysts. The results revealed that Mo2N catalyst has good NH3 adsorption ability and facilitates the dissociation adsorption of N2. Moreover, the morphology and structure of Mo2N catalysts well maintained after the reaction. Therefore, among the three transition metal nitrides (Mo2N, W2N and VN) and some Mo‐based catalysts previously reported, Mo2N catalysts showed very high activity and stability. Nearly 94% conversion of NH3 could be reached at 550°C with the gas hourly space velocity of 22000 cm3?gcat–1?h–1 and no obvious deactivation was observed during a 72 h test.  相似文献   

19.
The magnetic Fe3O4 nanoparticle was functionalized by covalently grafting amine group with (3-aminopropyl) trimethoxy silane, and the Fe3O4–NH2 nanoparticle and the Fe3O4 nanoparticle were characterized by Fourier transform infrared, and X-ray diffraction. And the results indicated the amine-group was immobilized successfully on the surface of Fe3O4. The adsorption behavior of uranium from aqueous solution by the Fe3O4 nanoparticle and the Fe3O4–NH2 nanoparticle was investigated using batch experiments. The pH of initial aqueous solution at 5.0 and 6.0 were in favour of adsorption of uranium, and the adsorption percentage of uranium by the Fe3O4 nanoparticle and the Fe3O4–NH2 nanoparticle were 81.2 and 95.6 %, respectively. In addition, the adsorption of uranium ions could be well-described by the Langmuir, Freundlich isotherms and pseudo-second kinetic models. The monolayer adsorption maximum capacity of the Fe3O4 nanoparticle and the Fe3O4–NH2 nanoparticle were 85.35 and 268.49 mg/g at 298.15 K, respectively, which indicate the adsorption capacity the Fe3O4 nanoparticle was improved by amine functionalization.  相似文献   

20.
An S‐shaped gas isotherm pattern displays high working capacity in pressure‐swing adsorption cycle, as established for CO2, CH4, acetylene, and CO. However, to our knowledge, this type of adsorption behavior has not been revealed for NH3 gas. Herein, we design and characterize a hydrogen‐bonded organic framework (HOF) that can adsorb NH3 uniquely in an S‐shape (type IV) fashion. While conventional porous materials, mostly with type I NH3 adsorption behavior, require relatively high regeneration temperature, this platform which has significant working capacity is easily regenerated and recyclable at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号