首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This article discusses different approaches to build up supramolecular nanoarchitectures on surfaces, which were simultaneously investigated by scanning tunneling microscopy (STM) on the single-molecule level. Following this general road map, first, the hydrogen-bonding guided self-assembly of two different, structural-equivalent molecular building blocks, azobenzene dicarboxylic acid and stilbene dicarboxylic acid, was studied. Secondly, the coordination chemistry of the same building blocks, now acting as ligands in metal coordination reactions, towards co-sublimed Fe atoms was studied under near surface-conditions. Extended two-dimensional tetragonal network formation with unusual Fe2L(4/2)-dimers at the crossing points was observed on copper surfaces. Complementary to the first two experiments, a two-step approach based on the solution-based self-assembly of square-like tetranuclear complexes of the M4L4-type with subsequent deposition on graphite surfaces was investigated. One- and two-dimensional arrangements as well as single molecules of the M4L4-complexes could be observed. Moreover, the local electronic properties of a single M4L4-complexes could be probed with submolecular resolution by means of scanning tunnelling spectroscopy (STS).  相似文献   

2.
Porphyrins are promising components to be used in molecular electronics due to their rich electronic/photonic properties. Preparation of supramolecular architectures of porphyrins on solid surfaces would constitute a basis for further development toward molecular circuitry or other constructs for molecular electronics applications. Assemblies on surfaces can be probed with scanning tunneling microscopy (STM) at submolecular resolutions to reveal the arrangements and conformations of molecules on an individual molecule basis. The electronic characteristics within a single porphyrin molecule can also be probed by means of the same technique. This review summarizes the status quo of STM studies on porphyrins on surfaces with regard to their assemblies, structures, and electronic properties at the single molecule level.  相似文献   

3.
The synthesis and structures of the N‐[(2‐hydroxy‐3‐methyl‐5‐dodecylphenyl)methyl]‐N‐(carboxymethyl)glycine disodium salt (H L ) ligand and its neutral mononuclear complex [FeIII( L )(EtOH)2] ( 1 ) are reported. Structural and electronic properties of 1 were investigated by using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy (CITS) techniques. These studies reveal that molecules of 1 form well‐ordered self‐assemblies when deposited on a highly oriented pyrolytic graphite (HOPG) surface. At low concentrations, single or double chains (i.e., nanowires) of the complex were observed, whereas at high concentration the complex forms crystals and densely packed one‐dimensional structures. In STM topographies, the dimensions of assemblies of 1 found on the surface are consistent with dimensions obtained from X‐ray crystallography, which indicates the strong similarities between the crystal form and surface assembled states. Double chains are attributed to hydrogen‐bonding interactions and the molecules align preferentially along graphite defects. In the CITS image of complex 1 a strong tunneling current contrast at the positions of the metal ions was observed. These data were interpreted and reveal that the bonds coordinating the metal ions are weaker than those of the surrounding ligands; therefore the energy levels next to the Fermi energy of the molecule should be dominated by metal‐ion orbitals.  相似文献   

4.
Polymetallic, highly organized molecular architectures can be created by "bottom-up" self-assembly methods using ligands with appropriately programmed coordination information. Ligands based on 2,6-picolyldihydrazone (tritopic and pentatopic) and 3,6-pyridazinedihydrazone (tetratopic) cores, with tridentate coordination pockets, are highly specific and lead to the efficient self-assembly of square [3 x 3] Mn9, [4 x 4] Mn16, and [5 x 5] Mn25 nanoscale grids. Subtle changes in the tritopic ligand composition to include bulky end groups can lead to a rectangular 3 x [1 x 3] Mn9 grid, while changing the central pyridazine to a more sterically demanding pyrazole leads to simple dinuclear copper complexes, despite the potential for binding four metal ions. The creation of all bidentate sites in a tetratopic pyridazine ligand leads to a dramatically different spiral Mn4 strand. Single-crystal X-ray structural data show metallic connectivity through both mu-O and mu-NN bridges, which leads to dominant intramolecular antiferromagnetic spin exchange in all cases. Surface depositions of the Mn9, Mn16, and Mn25 square grid molecules on graphite (HOPG) have been examined using STM/CITS imagery (scanning tunneling microscopy/current imaging tunneling spectroscopy), where tunneling through the metal d-orbital-based HOMO levels reveals the metal ion positions. CITS imagery of the grids clearly shows the presence of 9, 16, and 25 manganese ions in the expected square grid arrangements, highlighting the importance and power of this technique in establishing the molecular nature of the surface adsorbed species. Nanoscale, electronically functional, polymetallic assemblies of this sort, created by such a bottom-up synthetic approach, constitute important components for advanced molecule-based materials.  相似文献   

5.
Coordination-assembled porphyrin macrocycles reinforced with covalent bondings were deposited on a metal surface by a pulse injection method, and their scanning tunneling microscopy (STM) images were recorded under ultrahigh vacuum conditions at liquid nitrogen temperature. The decamer ring consisting of 30 porphyrins gave clear circular STM images with hollow structure, whereas that without covalent linking did not give clear circular images, showing that covalent linking of the coordination pairs by ring-closing metathesis reaction was effective to reinforce the supramolecular structure on a metal surface. This strategy will be applicable to a variety of supramolecular assemblies.  相似文献   

6.
The adsorption of terephthalic acid [C(6)H(4)(COOH)(2), TPA] on a Pd(111) surface has been investigated by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure spectroscopy under ultrahigh vacuum conditions at room temperature. We find the coexistence of one- (1D) and two-dimensional (2D) molecular ordering. Our analysis indicates that the 1D phase consists of intact TPA chains stabilized by a dimerization of the self-complementary carboxyl groups, whereas in the 2D phase, consisting of deprotonated entities, the molecules form lateral ionic hydrogen bonds. The supramolecular growth dynamics and the resulting structures are explained by a self-limiting deprotonation process mediated by the catalytic activity of the Pd surface. Our models for the molecular ordering are supported by molecular mechanics calculations and a simulation of high resolution STM images.  相似文献   

7.
The self-organization of supramolecular structures, in particular gold-containing hydrogen-bonded rosettes, on highly oriented pyrolytic graphite (HOPG) surfaces was investigated by tapping-mode atomic force microscopy (TM-AFM) and scanning tunneling microscopy (STM). TM-AFM and high-resolution STM results show that these hydrogen-bonded assemblies self-organize to form highly ordered domains on HOPG surfaces. We find that a subtle change in one of the building blocks induces two different orientations of the assembly with respect to the surface. These results provide information on the control over the construction of supramolecular nanoarchitectures in 2D with the potential for the manufacturing of functional materials based on structural manipulation of molecular components.  相似文献   

8.
The self-assembly of lipophilic deoxyguanosine derivatives 1 and 2 has been studied in solution by NMR spectroscopy and ESI-MS (electrospray ionization mass spectrometry). NMR data show the existence of two types of self-assembled, ribbonlike structures (A and B), which are connected at the guanine moieties through two different H-bonded networks. The first species (A), which is stable in the solid state and characterised by cyclic NH(2)-O(6) and NH(1)-N(7) hydrogen bonds, is detected soon after dissolving the polycrystalline powder in rigorously anhydrous CDCl3. In solution it slowly undergoes a structural transition towards a thermodynamically stable ribbon characterised by NH(1)-O(6) and NH(2)-N(3) cyclic hydrogen bonds (B). On the other hand, at surfaces, self-assembled ribbon nanostructures have been grown from solutions of derivative 1 both on mica and at the graphite-solution interface. They have been investigated by means of tapping mode scanning force microscopy (SFM) and scanning tunnelling microscopy (STM), respectively. SFM revealed dry, micrometer-long nanoribbons with a molecular cross-section. while STM imaging at submolecular resolution indicates a molecular packing of type A, like the one detected in the solid state. This indicates that, upon adsorption at the solid-liquid interface, the guanosine moieties undergo a structural rearrangement from a B-type to an A-type ribbon.  相似文献   

9.
A two-dimensional molecular network of trimesic acid on Au(111) was visualized by in situ scanning tunneling microscopy with submolecular resolution. The supramolecular structures including an 'order to order' phase transition were constructed by precise potential-controlled adsorption based on adsorption-induced self-organization.  相似文献   

10.
Hydrogen bonds with high selectivity and directionality are significant in harnessing molecules to form 2D supramolecular nanostructures. The competition and reorganization of hydrogen bond partners determine the ultimate molecular assembly and pattern in a 2D supramolecular system. In this study, multicomponent assemblies of a monodendron (5-benzyloxy-isophthalic acid derivative, BIC) and pyridylethynyl derivatives [1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBPC12) and 1,4-bis(4-pyridylethynyl)-2,3-bis-octadecyloxy-benzene (PBPC18)] have been studied by scanning tunneling microscopy (STM) on a graphite surface. BIC molecules are able to associate with PBPC12 and PBPC18 molecules to induce the rearrangement of hydrogen bond partners and form coassembly structures. Interestingly, BIC acts as a template molecule in the coassembly process, and these multicomponent structures exhibit similar structural features to the assembly structures of BIC itself. The structural details of the coassembled structures are revealed by high-resolution STM images, and their relationship with the original BIC assemblies is discussed. These results provide important insights into the design and fabrication of hydrogen-bond-directed multicomponent molecular nanostructures on solid surfaces.  相似文献   

11.
New metallomacrocycles composed of 2,2':6',2″-terpyridine (tpy) ligands and Ru(II) or Fe(II) transition metal ions were prepared by stepwise directed assembly and characterized by 2D diffusion NMR spectroscopy (DOSY), electrospray ionization traveling wave ion mobility mass spectrometry (ESI TWIM MS), and molecular modeling. The supramolecular polymers synthesized include a homonuclear all-Ru hexamer as well as heteronuclear hexamer and nonamer with alternating Ru/Ru/Fe metal centers. ESI MS yields several charge states from each supramacromolecule. If ESI is interfaced with TWIM MS, overlapping charge states and the isomeric components of an individual charge state are separated based on their unique drift times through the TWIM region. From experimentally measured drift times, collision cross-sections can be deduced. The collision cross-sections obtained for the synthesized supramacromolecules are in good agreement with those predicted by molecular modeling for macrocyclic structures. Similarly, the hydrodynamic radii of the synthesized complexes derived from 2D DOSY NMR experiments agree excellently with the radii calculated for macrocyclic architectures, confirming the ESI TWIM MS finding. ESI TWIM MS and 2D DOSY NMR spectroscopy provide an alternative approach for the structural analysis of supramolecules that are difficult or impossible to crystallize, such as the large macrocyclic assemblies investigated. ESI TWIM MS will be particularly valuable for the characterization of supramolecular assemblies not available in the quantity or purity required for NMR studies.  相似文献   

12.
We report on atomic force microscopy (AFM) and scanning tunnelling microscopy (STM) studies of the dynamic structure of adsorbate layers at the interface between highly oriented pyrolytic graphite and solutions of a fluorophore with two alkyl chains in phenyloctane. Layers grown above the saturation concentration showed a stable but highly corrugated surface. Below saturation an adsorbate film with a thickness of several molecular layers formed in equilibrium with the solution. The outer layers exhibit a dynamic supramolecular structure consisting of stripes with a spacing of 7 ± 1 nm. The cross-correlation analysis of several sequences of images revealed a characteristic reorganization time for the pattern of tens of seconds. By scanning at elevated forces (> 5 nN) the outer layers could be removed, thus revealing the structure of the first adsorbate layer, namely a stable stripe pattern. STM images of this first layer confirmed this stripe pattern and revealed details of the molecular arrangement at atomic resolution.  相似文献   

13.
Carbohydrates are the most abundant organic material on Earth and the structural “material of choice” in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.  相似文献   

14.
The two-dimensional assemblies of truxenone, diindeno[1,2-a;1',2'-c]fluorene-5,10,15-trione, on the Au(111) surface have been studied by scanning tunnelling microscopy in ultrahigh vacuum. It is found that the truxenone monolayer on Au(111) exhibits different two-dimensional supramolecular structures. The investigation using scanning tunnelling microscopy combined with the density functional theory calculations can be a helpful approach to understand the complicated supramolecular structures of truxenone self-assembly on Au(111).  相似文献   

15.
A polyoxometalate‐based molecular triangle has been synthesized through the metal‐driven self‐assembly of covalent organic/inorganic hybrid oxo‐clusters with remote pyridyl binding sites. The new metallomacrocycle was unambiguously characterized by using a combination of 1H NMR spectroscopy, 2D diffusion NMR spectroscopy (DOSY), electrospray ionization travelling wave ion mobility mass spectrometry (ESI‐TWIM‐MS), small‐angle X‐ray scattering (SAXS) and molecular modelling. The collision cross‐sections obtained from TWIM‐MS and the hydrodynamic radii derived from DOSY are in good agreement with the geometry‐optimized structures obtained by using theoretical calculations. Furthermore, SAXS was successfully employed and proved to be a powerful technique for characterizing such large supramolecular assemblies.  相似文献   

16.
Hybrid supramolecular architectures have been fabricated with acceptor 1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBP) and donor 2,6-bis(3,4,5-tris-dodecyloxy-phenyl)dithieno[3,2-b:2',3'-d]thiophene (DTT) compounds on highly oriented pyrolytic graphite (HOPG) surfaces, and their structures and molecular conductance are characterized by scanning tunneling microscopy/spectroscopy (STM/STS). Stable, one-component adlayers of PBP and DTT are also investigated. The coadsorption of two-component mixtures of PBP and DTT results in a variety of hybrid nanopattern architectures that differ from those of their respective one-component surface assemblies. Adjusting the acceptor/donor molar ratio in mixed adlayer assemblies results in dramatic changes in the structure of the hybrid nanopatterns. STS measurements indicate that the HOMO and LUMO energy levels of PBP and DTT on an HOPG surface are relatively insensitive to changes in the hybrid supramolecular architectures. These results provide important insight into the design and fabrication of two-dimensional hybrid supramolecular architectures.  相似文献   

17.
Chiral, enantiopure metallo-supramolecular rhombs self-assemble in solution through coordination of bis-pyridyl-substituted ligands with (en)M(NO3)2 (en = ethylenediamine, M = Pd(II), Pt(II)). Characterization by NMR and CD spectroscopy in solution and by ESI-FT-ICR mass spectrometry in the gas phase suggests that an equilibrium exists in water/methanol of a major 2:2 complex and a minor 3:3 complex of ligands and metal corners. In the gas phase, doubly charged 2:2 complexes fragment into two identical singly charged halves followed by metal-mediated C-H and C-C bond activation reactions within the ethylenediamine ligands. Electrochemical scanning tunneling microscopy (EC-STM) provides in situ imaging of the complexes even with submolecular resolution. Flat-lying rhombs are deposited under potential control from an aqueous electrolyte on a Cu(100) electrode surface precovered by a tetragonal pattern of chloride anions from the supporting electrolyte. Chirality induces the formation of only one domain orientation. Density functional calculations help to interpret the STM images.  相似文献   

18.
We have studied self-assembled molecular monolayers (SAMs) of complexes between Os(II)/(III), Fe(II)/(III), and Ru(II)/(III) and a 2,2',6',2'-terpyridine (terpy) derivative linked to Au(111)-electrode surfaces via a 6-acetylthiohexyloxy substituent at the 4'-position of terpy. The complexes were prepared in situ by first linking the terpy ligand to the surface via the S-atom, followed by addition of suitable metal compounds. The metal-terpy SAMs were studied by cyclic voltammetry (CV), and in situ scanning tunnelling microscopy with full electrochemical potential control of substrate and tip (in situ STM). Sharp CV peaks were observed for the Os- and Fe complexes, with interfacial electrochemical electron transfer rate constants of 6-50 s(-1). Well-defined but significantly broader peaks (up to 300 mV) were observed for the Ru-complex. Addition of 2,2'-bipyridine (bipy) towards completion of the metal coordination spheres induced voltammetric sharpening. In situ STM images of single molecular scale strong structural features were observed for the osmium and iron complexes. As expected from the voltammetric patterns, the surface coverage was by far the highest for the Ru-complex which was therefore selected for scanning tunnelling spectroscopy. These correlations displayed a strong peak around the equilibrium potential with systematic shifts with increasing bias voltage, as expected for a sequential two-step in situ ET mechanism.  相似文献   

19.
The imaging and manipulation capabilities of the scanning tunnelling microscope (STM) render possible a novel nanoscale chemistry based on experiments with single molecules. Herein, we address several aspects of a nanoscale stereochemistry using the STM. As an example, we investigate 1‐nitronaphthalene on Au(111). 1‐Nitronaphthalene becomes chiral upon planar adsorption on the metal surface. High‐resolution STM images reflect the asymmetric electronic structure of the molecules and allow for the determination of the absolute configuration of any individual molecule within complex molecular structures. At medium coverage, spontaneous breaking of the chiral symmetry results in the formation of homochiral conglomerates, while at high coverage racemic structures prevail. Finally, the tip of the STM is used to separate “supramolecule‐by‐supramolecule” a racemic mixture of chiral 1‐nitronaphthalene aggregates into the enantiopure compounds.  相似文献   

20.
扫描电子显微镜与扫描隧道显微镜联用装置   总被引:2,自引:0,他引:2  
在KYKY-1000B型扫描电子显微镜上所开发的与其联用的袖珍型扫描隧道显微镜主要有四个部分:(1)减震阻尼装置,(2)隧道探针,(3)探针扫描与逼近装置,(4)电子控制与图象采集系统。它的分辨率约为1nm,并用它观察了半导体光栅与硅上金膜的细微结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号