首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photogalvanic effect (PGE) in an asymmetric undoped system of three GaAs/AlGaAs quantum wells illuminated with white light of various intensities is investigated in magnetic fields up to 75 kOe at temperatures ranging from 4.2 K up to 300 K. A maximum of the spontaneous photogalvanic current J PGE as a function of the magnetic field predicted by A. A. Gorbatsevich et al., JETP Lett. 57, 580 (1993), is observed. Analysis of the experimental data shows that the main initial characteristic of the PGE is not the spontaneous current but rather the electromotive force E PGE arising in the direction perpendicular to the applied magnetic field. It is determined that this emf is independent of the intensity of the incident light, increases linearly with the size d of the illuminated region, and decreases slowly with temperature: E max PGE ∼0.8 V at 300 K and ∼0.1 V at 4.2 K for d∼3 mm. The curve E PGE(H) at room temperature is determined with allowance for the strong transverse magnetoresistance of the nanostructure. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 3, 197–202 (10 February 1996)  相似文献   

2.
A new mechanism for negative differential resistance (NDR) originating from local orbital symmetry matching between an electrode and a molecule in a single molecular electronic device is proposed and demonstrated by a joint experimental and theoretical scanning tunneling microscope study of a cobalt phthalocyanines (CoPc) molecule on a gold substrate. For two different metal tips used, Ni and W, NDR occurs only with Ni tips and shows no dependence on the geometrical shape of the tip. Calculations reveal that such a behavior is a result of local orbital symmetry matching between the Ni tip and Co atom.  相似文献   

3.
利用GW近似和非平衡格林函数结合的方法 研究了耦合到两个金属触点的N24B24分子的电子传输性. 计算结果表明,在单个和多个原子触点的态密度曲线上分别出现四个和三个谐振隧峰. 在I-V特性曲线上出现断路状态和微分负阻效应. 对于一、四、六、八原子的触点在电压分别在 ∓4.5、∓4、∓4.6、∓4.3 V表现出微分负阻效应行为. I-V特性在以低电压断开状态,呈独立的触点类型. I-V曲线取决于触点类型,并且表明N24B24分子呈现半导体的特性.  相似文献   

4.
The magnetic, electric, magnetoresistive, and structural properties are investigated in the sulfide solid solutions FexMn1−2x S, which are based on the antiferromagnetic semiconductor α-MnS (the fcc NaCl lattice). Colossal negative magnetoresistance (δH∼−83% at 160 K for x ∼ 0.29), comparable to that observed in La-Ca-Mn-O polycrystals and films (δH∼−90% at 100 K and 40 kOe), is observed in compounds with intermediate concentrations 0.26<x<0.4, corresponding to the region of incipient ferromagnetism. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 12, 895–899 (25 June 1999)  相似文献   

5.
The thermal effects in InGaAs/InAlAs quantum cascade lasers (QCLs) emitting at λ∼4.6 μm under pulsed and continuous-wave (CW) modes using a three-dimensional (3D) heat dissipation model were investigated. Based on the experimentally measured results, the thermal characteristics were theoretically analyzed for various device and heatsinking structures. Also, the heat accumulation effects and dissipation processes were studied in detail under pulsed operation. High cooling efficiencies were achieved by a relatively fast heat diffusion rate from the active core region for the epilayer-down bonded single ridge waveguide buried heterostructure (BH) with a thick electroplated Au around the laser ridge. A further improvement was made by the use of InP embedding layer. In CW mode, the thermal conductance (G th) value of 445 W/(K cm2) at 298 K was obtained for the epilayer-down bonded double-channel ridge waveguide QCL with AlN submount, which indicates a reasonable consistency with the available experimental data. By optimizing the device and heatsinking structures, the G th was improved to a high value of 673 W/(K cm2) at 298 K for the epilayer-down bonded single ridge waveguide BH QCL with InP embedding layer on diamond submount in CW mode.  相似文献   

6.
In the present paper, Pb(Mg1/3Nb2/3)O3 (PMN) ceramics prepared by the columbite method were investigated. The dielectric study indicates typical relaxor properties, with a frequency dispersion in the range of 200–350 K. The relaxor-to-paraelectric phase transition was evidenced by the continuous decrease of the local order parameter derived from the permittivity-temperature data. As a result of the critical behavior, the main Raman modes show anomalies at: (i) ∼150 K; (ii) ∼220 K (i.e. close to the critical temperature reported for the field-induced ferroelectric state in PMN single crystal); (iii) ∼260 K (i.e. the temperature of the permittivity maximum); (iv) ∼350 K (the temperature for initiation of the cluster freezing process T *); (v) ∼620 K (Burns temperature). The frequency split of the doublet at ∼605 and ∼500 cm−1 presents a critical behavior related to the local symmetry lowering and to the structure ordering due to a phase transformation which takes place below T *. The tunability in the paraelectric state was interpreted in terms of reorientation of the non-interacting nanopolar clusters in a double-well potential. The temperature dependence of the nanopolar domain size also shows anomalies in the range of T *. The size and dynamics of the polar nanodomains is essential in determining the functional properties of the Pb(Mg1/3Nb2/3)O3 relaxor.  相似文献   

7.
A new spintronics material with the Curie temperature above room temperature, the ZnSiAs2 chalcopyrite doped with 1 and 2 wt % Mn, is synthesized. The magnetization, electrical resistivity, magnetoresistance, and the Hall effect of these compositions are studied. The temperature dependence of the electrical resistivity follows a semiconducting pattern with an activation energy of 0.12–0.38 eV (in the temperature range 124 K ≤ T ≤ 263 K for both compositions). The hole mobility and concentration are 1.33, 2.13 cm2/V s and 2.2 × 1016, 8 × 1016 cm−3 at T = 293 K for the 1 and 2 wt % Mn compositions, respectively. The magnetoresistance of both compositions, including the region of the Curie point, does not exceed 0.4%. The temperature dependence of the magnetization M(T) of both compositions exhibits a complicated character; indeed, for T ≤ 15 K, it is characteristic of superparamagnets, while for T > 15 K, spontaneous magnetization appears which correspond to a decreased magnetic moment per formula unit as compared to that which would be observed upon complete ferromagnetic ordering of Mn2+ spins or antiferromagnetic ordering of spins of the Mn2+ and Mn3+ ions. Thus, for T > 15 K, it is a frustrated ferro- or ferrimagnet. It is found that, unlike the conventional superparamagnets, the cluster moment μ c in these compositions depends on the magnetic field: ∼12000–20000μB for H = 0.1 kOe, ∼52–55μB for H = 11 kOe, and ∼8.6–11.0μB at H = 50 kOe for the compositions with 1 and 2 wt % Mn, respectively. The specific features of the magnetic properties are explained by the competition between the carrier-mediated exchange and superexchange interactions.  相似文献   

8.
The behavior of the thermal conductivity k(T) of bulk faceted fullerite C60 crystals is investigated at temperatures T=8–220 K. The samples are prepared by the gas-transport method from pure C60, containing less than 0.01% impurities. It is found that as the temperature decreases, the thermal conductivity of the crystal increases, reaches a maximum at T=15–20 K, and drops by a factor of ∼2, proportional to the change in the specific heat, on cooling to 8 K. The effective phonon mean free path λ p, estimated from the thermal conductivity and known from the published values of the specific heat of fullerite, is comparable to the lattice constant of the crystal λ pd=1.4 nm at temperatures T>200 K and reaches values λp∼50d at T<15 K, i.e., the maximum phonon ranges are limited by scattering on defects in the volume of the sample in the simple cubic phase. In the range T=25−75 K the observed temperature dependence k(T) can be described by the expression k(T)∼exp(Θ/bT), characteristic for the behavior of the thermal conductivity of perfect nonconducting crystals at temperatures below the Debye temperature Θ (Θ=80 K in fullerite), where umklapp phonon-phonon scattering processes predominate in the volume of the sample. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 8, 651–656 (25 April 1997)  相似文献   

9.
Several large relational databases (DBs) containing various atomic nucleus parameters and nuclear reaction features were produced at the Centre for Photonuclear Experiments Data (Centr Dannyh Fotoyadernykh Eksperimentov (CDFE)) of the Skobeltsyn Institute of Nuclear Physics, Moscow State University). The sources are numerical data founds maintained by International Nuclear Data Centers Network of the International Atomic Energy Agency (IAEA) and produced by CDFE. The original CDFE product is the electronic “Chart of Quadrupole Nuclear Deformations” which includes ∼2000 sets of data on nuclei quadrupole moments Q and quadrupole deformation parameters β2 for ∼1500 nuclei. At last time, in the frame of joint research with the Joint Institute for Nuclear Research (JINR) that electronic Chart was supplemented with the data on nuclear mean-root-square (MRS) charge radii (∼900 isotopes of 90 elements (Z = 1–96, N = 0–152)) and therefore transformed into the “Chart of Nucleus Shape and Size Parameters”—complete collection of data under discussion. New Chart allows one to investigate the isotopic and isotonic behavior of nuclei quadrupole moments, parameters of quadrupole deformation and charge radii, and study the R(Z, N) surface structure and R(A) dependence of the fine structure. Original Russian Text ? I.N. Boboshin, V.V. Varlamov, Yu.P. Gangrsky, B.S. Ishkhanov, S.Yu. Komarov, K.P. Marinova, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 6, pp. 857–862.  相似文献   

10.
Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation. Approximately 1010 photons/pulse were generated in x-ray pulses of ∼18 to ∼28 ns duration from a source of ∼300 μm diameter, at = 4.51 keV (K α emission of titanium), with a brightness of ∼1020 photons/cm2/s/sr. This was sufficient to record single-shot x-ray radiographs of physical objects on a DEF-5 x-ray film kept at a distance of up to ∼10 cm.  相似文献   

11.
Studies of a classical III–V semiconductor (InSb) doped with 3d magnetic ions (Mn2+, having a localized spin S=55/2) reveal some unexpected transport properties. It is found that the transition from the metallic to the low-temperature insulator phase occurs at an impurity concentration N MnN cr=2× 1017 cm−3 and a temperature T<T cr∼1 K. Under these conditions a giant negative magnetoresistance arises. The experimental results can be explained in terms of the onset of a hard Mott-Hubbard gap Δ in the impurity band formed by the shallow manganese acceptor in InSb at N MnN cr. A model describing the gap formation is proposed. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 5, 358–362 (10 March 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

12.
The electroplex between (2-(4-trifluoromethyl-2-hydroxyphenyl)benzothiazole) zinc [Zn(4-TfmBTZ)2] as an electron-acceptor and N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) as an electron-donor was characterized by bilayer, blend, and multilayer quantum-well (MQW) device, respectively. The blend composition and quantum-well number are effective parameters for tuning electroluminescence color. White light with high color purity and color rendering index (CRI) was observed from these devices based on Zn(4-TfmBTZ)2/NPB. Moreover, the blend and MQW devices all exhibit high operation stability, hence excellent color stability. For the device with 5 mol% NPB in blend layer, its Commission International Del’Eclairage (CIE) coordinate region is x=0.28–0.31, y=0.33–0.35 and CRI is 83.3–91.2 at 5–9 V. For MQW structure device with NPB of 60 nm thickness, its CIE coordinate region is x=0.29–0.32, y=0.31–0.34 and CRI=87.9–92.5 at 10–15 V. Such high color stability and purity and CRI, being close to ideal white light, are of current important for white OLED.  相似文献   

13.
A cathodic needle growth which is possibly associated with the temperature-field (T-F) electron emission is described. Experimental data disclosed that densely populated needle crystals exhibiting a dendritic configuration growth at the tip area of a pointed cathode when it is operated in an Mo(CO)6 or Cr(CO)6 atmosphere at a field strength just insufficient to draw field electrons. The needle growth occurs always at elevated temperatures of ∼600–∼700 K, indicating that it is triggered by T-F electrons emitted from the cathode tip. Needle crystals produced are not single crystals but composed of linearly packed micro-crystals, and those crystals obtainable from Mo(CO)6 are a face-centered cubic phase of Mo2C. Needles arising from Cr(CO)6 have not been identified, but they are believed to be an unknown phase of chromium carbide.  相似文献   

14.
Summary The emerging overview of the distant tail suggests to interpret some aspects of the magnetic-field observations obtained during January 1968 by Pioneer 8 in the region of expected tail (∼500R E) in terms of different magnetic-field regimes which might find correspondence in the experimental observations performed at ∼240R E by ISEE-3. At Pioneer position tail-like fields are typically accompanied by significant values of theB y component while evidence for a wave activity which mostly perturbs the trasversal magnetic-field components is occasionally detected during tail-like encounters. Paper presented at the V Cosmic Physics National Conference, S. Miniato, November 27–30, 1990.  相似文献   

15.
We investigate the disturbance of the InAs nanowire resistance by a conductive tip of a scanning probe micro-scope at helium temperature as a function of the tip position in close vicinity to the nanowire. At the tip displacement along the wire the resistance (R wire ∼ 30 kΩ, what is typical for diffusive regime) demonstrates quasi-periodical oscillations with an amplitude about 3%. The period of the oscillations depends on the number of electrons in the nanowire and is consistent with expected for standing electron waves caused by ballistic electrons in the top subband of the InAs nanowire.  相似文献   

16.
IR spectra of BeSO4.4H2O and its deuterated analogue at ∼300 K and ∼110 K are reported in the region 4000–1200 cm−1 using thin film and nujol mull techniques. The observed bands have been assigned as the internal modes of the water and the overtones and combinations of various modes using the recently revised assignments of SO4 2− and Be(aq)4 fundamentals in the region 1200–250 cm−1 (Srivastavaet al 1976). The splitting of the internal modes of water has been discussed in the light of the effects of deuteration and cooling and it is shown that all the water molecules in a unit cell are asymmetric but crystallographically equivalent.  相似文献   

17.
The field evaporation of a Hf-Mo alloy (15 wt. % Hf) is investigated using a time-of-flight atom probe. A moderately heated tip detects an impurity of Hf and Mo oxides on the surface. Thermofield microprotrusions grown at T=1440–1850 K in an electric field (retarding to electrons) of intensity E=(3.2–5)×107 V/cm are analyzed at room temperature and above. Zh. Tekh. Fiz. 68, 69–73 (March 1998)  相似文献   

18.
The temperature dependences of the resistance and magnetic susceptibility are studied in gallium-doped lead telluride, which is characterized by a delayed photoconductivity effect, under various illumination conditions. After a sample is illuminated at low temperatures, the magnetic susceptibility is diamagnetic in the region of metallic delayed conductivity (for T<=0 K). In the region of thermodynamic equilibrium (T<70 K), where conductivity is activational, the magnetic susceptibility is likewise diamagnetic and essentially equals the low-temperature value. A paramagnetic susceptibility peak is observed in the transitional region (T∼50–70 K), where the conductivity is of a nonequilibrium character but the carriers are still nondegenerate. This peak increases in magnitude with the rate of measurements in the indicated temperature range. In addition, a paramagnetic variation of the susceptibility following the Curie law is observed with uncontrollable (weak) illumination from the cryostat cap at low temperatures (T<25 K). The interpretation of the observed dependences is based on notions of variable valence of gallium in lead telluride, while the appearance of a paramagnetic susceptibility peak is attributed to the presence of shallow localized levels of gallium in a trivalent state. Zh. éksp. Teor. Fiz. 114, 1859–1867 (November 1998)  相似文献   

19.
Thin film iron-tetracyanoethylene Fe(TCNE) x , x∼2, as determined by photoelectron spectroscopy, was grown in situ under ultra-high vacuum conditions using a recently developed physical vapor deposition-based technique for fabrication of oxygen- and precursor-free organic-based molecular magnets. Photoelectron spectroscopy results show no spurious trace elements in the films, and the iron is of Fe2+ valency. The highest occupied molecular orbital of Fe(TCNE) x is located at ∼1.7 eV vs. Fermi level and is derived mainly from the TCNE singly occupied molecular orbital according to photoelectron spectroscopy and resonant photoelectron spectroscopy results. The Fe(3d)-derived states appear at higher binding energy, ∼4.5 eV, which is in contrast to V(TCNE)2 where the highest occupied molecular orbital is mainly derived from V(3d) states. Fitting ligand field multiplet and charge transfer multiplet calculations to the Fe L-edge near edge X-ray absorption fine structure spectrum yields a high-spin Fe2+ (3d6) configuration with a crystal field parameter 10Dq∼0.6 eV for the Fe(TCNE) x system. We propose that the significantly weaker Fe-TCNE ligand interaction as compared to the room temperature magnet V(TCNE)2 (10Dq∼2.3 eV) is a strongly contributing factor to the substantially lower magnetic ordering temperature (T C ) seen for Fe(TCNE) x -type magnets.  相似文献   

20.
We experimentally demonstrate a practical scheme to form a controllable double-well optical dipole trap for cold atoms (or cold molecules), and give some experimental results as well as the fabrication method of a binary π-phase plate. The dependence of the double-well characteristics on the phase etching error of the π-phase plate and the evolution of the double-well optical trap from two wells to a single one are studied both theoretically and experimentally, and the experimental results are consistent with the theoretical prediction. Furthermore, the dynamic process of loading and splitting of cold 87Rb atoms from a standard magneto-optical trap (MOT) into our controllable double-well one are studied by Monte Carlo simulations. Our study shows that the loading efficiency of cold atoms from the standard MOT into our single-well trap can reach 100%, and the relative atomic density will be reduced from 1.0 to ∼0.5 during the evolution of our double-well trap, in which the temperature of cold atoms is reduced from 20 μK to ∼15 μK. In final, some potential applications of our controllable double-well optical trap in atom and molecule optics are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号