首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湍流边界层等动量区演化机理的实验研究   总被引:1,自引:0,他引:1  
等动量区是瞬时流场中流体动量接近的局部区域,其生成和分布与相干结构密切相关.对等动量区的研究有助于更深入认识湍流边界层相干结构,但目前对其演化过程还缺乏实验支持和机理分析.设计并使用移动式高时间分辨率粒子图像测速技术(TRPIV)系统对光滑平板湍流边界层进行了跟踪测量,用滤波方式对数据进行降噪,结合对直接数值模拟数据的...  相似文献   

2.
The present paper addresses experimental studies of Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. A momentum thickness Reynolds number varies from 1,100 to 20,100 with a wind tunnel enclosed in a pressure vessel by varying the air density and wind tunnel speed. A custom-built, high-resolution laser Doppler anemometer provides fully resolved turbulence measurements over the full Reynolds number range. The experiments show that the mean flow is at most a very weak function of Reynolds number while turbulence quantities strongly depend on Reynolds number. Roller vortices are generated in the separated shear layer caused by the Kelvin–Helmholtz instability. Empirical Reynolds number scalings for the mean velocity and Reynolds stresses are proposed for the upstream boundary layer, the separated region, and the recovery region. The inflectional instability plays a critical role in the scaling in the separated region. The near-wall flow recovers quickly downstream of reattachment even if the outer layer is far from an equilibrium state. As a result, a stress equilibrium layer where a flat-plate boundary layer scaling is valid develops in the recovery region and grows outward moving downstream.  相似文献   

3.
Time-developing direct numerical simulation (DNS) was performed to clarify the higher-order turbulent behaviors in the thermally-driven boundary layers both in air and water along a heated vertical flat plate. The predicted statistics of the heat transfer rates and the higher-order turbulent behaviors such as skewness factors, flatness factors and spatial correlation coefficients of the velocity and temperature fluctuations in the natural-convection boundary layer correspond well with those obtained from experiments for space-developing flows. The numerical results reveal that the turbulent structures of the buoyancy-driven boundary layers are mainly controlled by the fluid motions in the outer region of the boundary layer, and these large-scale structures are strongly connected with the generation of turbulence in the thermally-driven boundary layers, in accordance with the actual observations for space-developing flows. Moreover, to specify the turbulence structures of the boundary layers, the cross-correlation coefficients and the characteristic length scales are examined for the velocity and thermal fields. Consequently, it is found that with a slight increase in freestream velocity, the cross-correlation coefficient for the Reynolds shear stress and turbulent heat flux increases for opposing flow and decreases for aiding flow, and the integral scales for the velocity and temperature fields become larger for opposing flow and smaller for aiding flow compared with those for the pure natural-convection boundary layer.  相似文献   

4.
Turbulent flow of an incompressible fluid in a plane channel with parallel walls is considered. The three-dimensional time-dependent Navier-Stokes equations are solved numerically using the spectral finite-difference method. An artificial force which completely suppresses lateral oscillations of the velocity is introduced in the near-wall zone (10 % of the channel half-width in the neighborhood of each wall). Thus, the three-dimensional flow zone, in which turbulent oscillations can develop, is separated from the wall by a fluid layer. It is found that the elimination of three-dimensionality in the neighborhood of the walls leads to a significant reduction in the drag. However, complete laminarization does not occur. The flow in the stream core remains turbulent and can be interpreted as a turbulent flow in a channel with walls located on the boundary of the two-dimensional layer and traveling at the local mean-flow velocity. The oscillations developing inside the two-dimensional layer, which have significant amplitude, distort the flow only in the adjacent zone. Beyond this zone the distributions of the mean characteristics and the structure of instantaneous fields completely correspond to ordinary turbulent flow in a channel with rigid walls. The results obtained confirm the hypothesis of the unimportance of the no-slip boundary conditions for the fluctuating velocity component in the mechanism of onset and self-maintenance of turbulence in wall flows.  相似文献   

5.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

6.
Measurements of spatio–temporal velocity fields at the separated shear layer and reattachment region of a two-dimensional backward-facing step flow are carried out simultaneously using a multi-point LDV. The objective of this paper is to clarify experimentally the structure of a large-scale structure of this flow field using a space and time correlation and conditional average. From the results of the correlation of the velocity fluctuation, the moving path of the vortex shedding from the separated shear layer to the reattachment region exhibits two patterns which it moves to near the wall region or the middle of the step height at the reattachment region. Especially, it moves to near the wall region when it grows larger in the separated shear layer. Moreover, the turbulence concerned with reattachment phenomenon transports from the reattachment region to a separated shear layer by recirculation flow. According to these transports of turbulence, a model for large-scale fluctuation is proposed as a self-excitation motion.  相似文献   

7.
We performed a direct numerical simulation of a low-Mach-number turbulent boundary layer using fundamental equations of compressible flow to investigate the relation between vortex structures and the density distribution. A fully developed turbulent boundary layer of compressible flow was reproduced in the simulation. From the turbulence statistics and instantaneous structures of the density fluctuation, we identified different features in the three regions of a near-wall field, far field and flow field outside the turbulent boundary layer. Structures of the density fluctuation could correspond to sound sources in a turbulent boundary layer. We then observed fine-scale structures of the density fluctuation that were strongly related to turbulent vortices in the vicinity of the wall. In addition, there were large-scale density structures in the upper boundary layer. The large-scale structures seem to correlate with the fine-scale structures close to the wall, with there being a non-steady larger-scale density fluctuation profile in the outer region of the boundary layer.  相似文献   

8.
减阻工况下壁面周期扰动对湍流边界层多尺度的影响   总被引:1,自引:0,他引:1  
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160Hz),使用单丝边界层探针对压电振子自由端下游2mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果.   相似文献   

9.
Flow structures of a separating, reattaching, and recovering boundary layer over a smoothly contoured ramp are examined for an order of magnitude range of Reynolds number, which is achieved by increasing the wind tunnel pressure by up to 8 atm and varying the tunnel speed by a factor of three. The study was performed using instantaneous velocity vector plots and two-point correlations measured by PIV. The present paper discusses length scales of large-scale motions of the flow and roller vortices in the separated shear layer and their dependence on the Reynolds number or the flow geometry. Two-point correlation profiles show that the Reynolds number effects on the correlations vary strongly from region to region within the flow. Downstream of reattachment, correlation profiles show that the inner portion of the boundary layer recovers more rapidly than the outer portion, where excessively active eddies still persist. The Reynolds number effects seen at reattachment diminish in the recovery region, and the correlation profiles start to take on ordinary boundary layer characteristics.  相似文献   

10.
用平均速度剖面法测量壁湍流摩擦阻力   总被引:10,自引:1,他引:9  
樊星  姜楠 《力学与实践》2005,27(1):28-30
用IFA300恒温热线风速仪精细测量风洞中不同雷诺数流动条件下的平板湍流边界层近壁区域对数律平均速度剖面.利用平板湍流边界层近壁区域的对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量平板湍流边界层近壁区域对数律平均速度剖面的基础上,测量平板湍流边界层的壁面摩擦阻力.实现了平板湍流边界层壁面摩擦阻力的无干扰或微小干扰测量.该种方法操作简便,不需要在流场中安装测力天平、传感器等复杂的测量装置,不需要对湍流边界层的壁面进行破坏,不会影响湍流边界层壁面附近区域原有的流场条件,是一种切实可行的测量平板湍流边界层壁面摩擦阻力的简便方法.  相似文献   

11.
The spatio-temporal characteristics of the separated and reattaching turbulent flow over a two-dimensional square rib were studied experimentally. Synchronized measurements of wall-pressure fluctuations and velocity fluctuations were made using a microphone array and a split-fiber film, respectively. Profiles of time-averaged streamwise velocity and wall-pressure fluctuations showed that the shear layer separated from the leading edge of the rib sweeps past the rib and directly reattaches on the bottom wall (x/H=9.75) downstream of the rib. A thin region of reverse flow was formed above the rib. The shedding large-scale vortical structures (fH/U0=0.03) and the flapping separation bubble (fH/U0=0.0075) could be discerned in the wall-pressure spectra. A multi-resolution analysis based on the maximum overlap discrete wavelet transform (MODWT) was performed to extract the intermittent events associated with the shedding large-scale vortical structures and the flapping separation bubble. The convective dynamics of the large-scale vortical structures were analyzed in terms of the autocorrelation of the continuous wavelet-transformed wall pressure, cross-correlation of the wall-pressure fluctuations, and the cross-correlation between the wall pressure at the time-averaged reattachment point and the streamwise velocity field. The convection speeds of the large-scale vortical structures before and after the reattachment point were Uc=0.35U0 and 0.45U0, respectively. The flapping motion of the separation bubble was analyzed in terms of the conditionally averaged reverse-flow intermittency near the wall region. The instantaneous reattachment point in response to the flapping motion was obtained; these findings established that the reattachment zone was a 1.2H-long region centered at x/H=9.75. The reverse-flow intermittency in one period of the flapping motion demonstrated that the thin reverse flow above the rib is influenced by the flapping motion of the separation bubble behind the rib.  相似文献   

12.
激波/湍流边界层干扰问题广泛存在于高速飞行器内外流动中, 激波干扰会导致局部流场出现强压力脉动, 严重影响飞行器气动性能和飞行安全. 为了考察干扰区内脉动压力的统计特性, 对来流马赫数2.25, 激波角33.2°的入射激波与平板湍流边界层相互作用问题进行了直接数值模拟研究. 在对计算结果进行细致验证的基础上, 分析比较了干扰区外层和物面脉动压力的典型统计特征, 如脉动强度、功率谱密度、两点相关和时空关联特性等, 着重探讨了两者的差异及其原因. 研究发现, 激波干扰对外层和物面压力脉动的影响差异显著. 分离区内脉动以低频特征为主, 随后再附区外层压力脉动的峰值频率往高频区偏移, 而物面压力脉动的低频能量仍相对较高. 两点相关结果表明, 外层和物面脉动压力的展向关联性均明显强于其流向, 前者积分尺度过激波急剧增长随后缓慢衰减, 而后者积分尺度整体上呈现逐步增大趋势. 此外, 时空关联分析结果指出, 脉动压力关联系数等值线仍符合经典的椭圆形分布, 干扰区下游压力脉动对流速度将减小, 外层对流速度仍明显高于物面.   相似文献   

13.
The results of measuring the pressure fluctuations on the wall of the nozzle of a hypersonic wind tunnel beneath a developed turbulent boundary layer are presented for the Mach number M = 7.5. On the basis of a statistical analysis, it is shown that the action of the turbulent flow is dynamically similar to the propagation of a random sequence of wave packets with continuously distributed temporal and spatial scales. Low-frequency disturbances are associated with large-scale structures of long duration that propagate at a mean-statistical velocity similar in value to the outer flow velocity. The continuous generation of weakly-correlated small-scale disturbances ensuring the maintenance and development of turbulence occurs chiefly in the inner region of the boundary layer. Spectral estimates of the power generated by the turbulent flow in the wall region of the boundary layer are presented.  相似文献   

14.
An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters.  相似文献   

15.
The experimental study of the turbulent boundary layer under external flow conditions similar to those found on the suction side of airfoils in trailing-edge post-stall conditions has been performed. Detailed boundary layer measurements were carried out with a PIV system and a two-sensor wall probe. They cover the region downstream of the suction peak where the boundary layer is subjected to a very strong adverse pressure gradient and has suffered from an abrupt transition from strong favorable to strong adverse pressure gradients. The experiments show that in spite of these severe conditions, the boundary layer is surprisingly able to recover a state of near-equilibrium before separating. In this near-equilibrium zone, the mean velocity defect and all the measured Reynolds stresses are self-similar (in the outer region) with respect to the outer scales δ and U e δ*/δ. The mean momentum balance indicates that for the upper half of the outer region, the advection terms dominate all the stress-gradient terms in the zone prior to separation. A large portion of the outer region has therefore become essentially an inertial flow zone where an approach toward equilibrium is expected.An erratum to this article can be found at  相似文献   

16.
The effect of the separating shear-layer thickness and shape on the structure of the flow in the reattachment region of a backward-facing step is examined using wall static-pressure profiles and turbulence data for a range of Reynolds number (800 < Re H< 40,000) and upstream boundary-layer thickness (0 < δ/H < 2). The reattachment pressure and the peak pressure in the reattachment zone decrease in a continuous manner as the upstream boundary layer thickens. The thinnest boundary layers follow the correlation of Roshko and Lau. Using the pressure data, correlations are developed which can be used to predict the level of turbulent shear stress in the near-wall region at reattachment, a location in which experimental data are extremely difficult to obtain.  相似文献   

17.
The present study describes the application of particle image velocimetry (PIV) to investigate the compressible flow in the wake of a two-dimensional blunt base at a freestream Mach number MX=2. The first part of the study addresses specific issues related to the application of PIV to supersonic wind tunnel flows, such as the seeding particle flow-tracing fidelity and the measurement spatial resolution. The seeding particle response is assessed through a planar oblique shock wave experiment. The measurement spatial resolution is enhanced by means of an advanced image-interrogation algorithm. In the second part, the experimental results are presented. The PIV measurements yield the spatial distribution of mean velocity and turbulence. The mean velocity distribution clearly reveals the main flow features such as expansion fans, separated shear layers, flow recirculation, reattachment, recompression and wake development. The turbulence distribution shows the growth of turbulent fluctuations in the separated shear layers up to the reattachment location. Increased velocity fluctuations are also present downstream of reattachment outside of the wake due to unsteady flow reattachment and recompression. The instantaneous velocity field is analyzed seeking coherent flow structures in the redeveloping wake. The instantaneous planar velocity and vorticity measurements return evidence of large-scale turbulent structures detected as spatially coherent vorticity fluctuations. The velocity pattern consistently shows large masses of fluid in vortical motion. The overall instantaneous wake flow is organized as a double row of counter-rotating structures. The single structures show vorticity contours of roughly elliptical shape in agreement with previous studies based on spatial correlation of planar light scattering. Peak vorticity is found to be five times higher than the mean vorticity value, suggesting that wake turbulence is dominated by the activity of large-scale structures. The unsteady behavior of the reattachment phenomenon is studied. Based on the instantaneous flow topology, the reattachment is observed to fluctuate mostly in the streamwise direction suggesting that the unsteady separation is dominated by a pumping-like motion.  相似文献   

18.
Coherent motions in the turbulent boundary layer and their relation to the large-scale structures in the intermittent region are investigated experimentally. Using conditional sampling technique, we have shown that a coherent motion is a pair of counter-rotating fluid motions. These coherent motions of various sizes take place in the turbulent boundary layer. Most of them are short and are found only near the wall, but some are tall enough to reach the outer edge of the boundary layer. The turbulent bulges of the intermittent region are formed by these tall coherent motions.  相似文献   

19.
A turbulent separation-reattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter. The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel. At the inlet of the diffuser, Reynolds number based on the diffuser height is 1.2×105 and the velocity is 25.2m/s. The results of experiments are presented and analyzed in new defined streamline-aligned coordinates. The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress. A scale is formed using the maximum Reynolds shear stresses. It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law exists in the forward shear flow. Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model. The length scale is taken from that developed by Schofield and Perry. The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield-Perry velocity scale as well as the edge velocity of the boundary layer. The results of these experiments are presented in this paper.  相似文献   

20.
成璐  姜楠 《实验力学》2015,30(1):51-58
运用高时间分辨率粒子图像测速(Time-resolved PIV简称TRPIV),测量得到平板湍流边界层流向/法向平面内瞬时速度矢量空间分布的时间序列;采用空间局部平均速度结构函数的概念,识别和提取湍流边界层中大尺度发卡涡包结构的空间特征。发现在湍流边界层中不同法向位置多个正负发卡涡包结构同时交替存在。这些分布在不同法向高度的发卡涡包结构之间通过倾斜的涡量剪切层相联系,构成了湍流边界层中内、外区紧密相连、相互作用的一种稳态的分布方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号