首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By means of spatially resolved high-resolution X-ray spectroscopy, we have investigated the generation of fast ions at various laser installations with different flux densities and laser wavelengths. It is demonstrated that the fast ion generation in laser-produced plasma can be achieved for a very low level of the averaged laser intensity on the target. The time-of-flight mass spectrometry ion diagnostics and X-ray spectrographs give very close results for the energy distribution of the thermal ion component. For higher energies, however, we found significant differences: the spatially resolved high-resolution spectrographs expose the presence of suprathermal ions, while the time-of-flight method does not. Suprathermal ion energies E ion plotted as a function of the qλ2 parameter show a large scatter far above the experimental errors. The cause of these large scatters is attributed to a strong nonuniformity of the laser intensity distribution in the focal spot. The analysis by means of hydrodynamics and spectral simulations show that the X-ray emission spectrum is a complex convolution from different parts of the plasma with strongly different electron density and temperature. It is shown that the highly resolved Li-like satellite spectrum near Heαcontains significant distortions even for very low hot electron fractions. Non-Maxwellian spectroscopy allows determination of both the hot electron fraction and the bulk electron temperature.  相似文献   

2.
We study pump requirements to produce femtosecond X-ray laser pulses at saturation from inner-shell transitions in the amplified spontaneous emission regime. Since laser-based betatron radiation is considered as the pumping source, we first study the impact of the driving laser power on its intensity. Then we investigate the amplification behavior of the K-α transition of nitrogen at 3.2?nm (395?eV) from radiative transfer calculations coupled with kinetics modeling of the ion population densities. We show that the saturation regime may be experimentally achieved by using PW-class laser-accelerated electron bunches. Finally, we show that this X-ray laser scheme can be extended to heavier atoms and we calculate pump requirements to reach saturation at 1.5?nm (849?eV) from the K-α transition of neon.  相似文献   

3.
The X-ray lines of ions in a solid target interacting with picosecond laser pulses of moderate intensity (2×1017 W/cm2) were measured on the “Neodim” laser facility. X-ray Ly α emission spectra of hydrogen-like fluorine ions were observed. Satellite lines were also observed, evidencing the presence of intense plasma oscillations. The positions and separation between the satellites allow their assignment to the intense electrostatic oscillations with an amplitude larger than 108 V/cm and a frequency of about 7× 1014 s?1 that is noticeably lower than the laser frequency ωlas~1.8×1015 s?1. It is suggested that these oscillations may be due to strong plasma turbulence caused by the development of plasma oscillations of the Bernstein-mode type under the action of a strong magnetic field generated in plasma. The experimental results are compared with the calculated spectra of multicharged ions.  相似文献   

4.
5—200?范围激光等离子体X射线辐射特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用带有针孔的透射式光栅光谱仪研究了激光等离子体X射线辐射的原子序数依赖性和激光功率密度对辐射的影响。得到了波长为1.06μm,平均功率密度为5×1014W/cm2的激光辐照条件下Z=6(C)到Z=79(Au)的不同原子序数激光等离子体X射线发射光谱。点聚焦和线聚焦激光照射方式下Al,Au等离子体X射线发射的对照实验结果表明,激光功率密度对低Z等离子体X射线发射的影响比对高Z的影响更明显。 关键词:  相似文献   

5.
High-resolution soft X-ray spectra of H-like and He-like ions were produced from laser irradiated silicon and aluminum targets. Plasma size was about 100 μm. X-ray spectra were analyzed to determine plasma parameters. We compared the line shape of resonance transitions and their intensity ratios to corresponding dielectronic satellites and the intensities of the inter combination lines of He-like ions, with the results of model calculations. Such comparison gave average values of the electron density N e=(1?1.9)×1021 cm?3 and the electron temperature T e=460–560 eV for Si plasmas and about 560 eV for Al plasmas produced by the first and the second laser harmonics. According to our estimations, more than 1012 photons were produced within the resonance line spectral width and in the solid angle 2π steredian during the total decay period.  相似文献   

6.
X-ray emission spectra of the plasma created at the surface of magnesium, aluminum, copper, and zinc targets heated by 1-ps laser pulses with a peak power density of up to 1016 W/cm2 were measured. The effect of a picosecond prepulse on the spectra was studied for various power densities and intensity contrasts of the main laser pulse. It is established that the emission spectra of laser plasmas are weakly affected by a change from 105 to 107 in the main pulse contrast relative to the first prepulse. Variations in the parameters of emission from aluminum and magnesium plasmas were calculated using relative intensities and widths of the resonance lines of H-and He-like ions and their two-electron satellite peaks.  相似文献   

7.
M. B. Smirnov 《Laser Physics》2010,20(5):1009-1018
X-ray radiation is studied for large clusters consisting of 107–1010 atoms and irradiated by an intense laser pulse with an intensity ranged from (1014 up to 1018 W/cm2). The model is developed for such a laser plasma that includes the radiative transitions and the processes of excitation and quenching of multicharged ions of this plasma by electron impact. Due to interaction of a radiating multicharged ion with a surrounding plasma, spectral lines of emission are broaden and neighboring spectral lines are overlapped. As a result, the spectrum of radiation of multicharged ions is transformed into a continuous spectral band. The model under consideration includes important plasma processes including dielectronic recombination, spontaneous radiation, excitation, quenching and ionization of multicharged ions by electron impact. On the basis of the model developed the X-ray spectrum and spectral power are evaluated. In the range of laser intensities under consideration a laser plasma formed contains multicharged ions with charges Z = 26?36 that corresponds to the 3d-electron shell in the xenon case.  相似文献   

8.
VUV emission spectra of plasmas produced by focusing laser radiation with intensity of 1010–1011 W/cm2 on carbon and aluminum targets were studied. Using the partial local thermodynamic equilibrium model for an electron density exceeding 1017 cm?3, the spectroscopic diagnostics and the analysis of ion composition of plasmas were carried out. The electron temperatures determined for carbon and aluminum plasmas from the ratio of intensities of ionic lines were found to be 8±3 eV and 11±4 eV, respectively. Stark broadening of aluminum lines was measured and parameters of electron broadening were determined. Using the spatially resolved measurement of Stark line broadening, the spatial density distribution and the law of electron gas expansion were found. The electron gas in the hot region of size 5 mm with an average density of (5±2) 1017cm ?3 experienced one-dimensional expansion according to the law 1/z 1.1 with increasing distance z from the target.  相似文献   

9.
We have studied the ΔJ = 2 rotationally shifted emission lines in the region of the strong absorption of molecular iodine which occurs within the 5145 Å argon ion laser line. We used an etalon tuned, single frequency argon ion laser with a linewidth of 20 MHz to excite the iodine emission and recorded the spectra of the rotational lines with Fabry-Perot spectrometers having resolutions up to 70 MHz (0.0023 cm-1). To overcome Doppler linewidth limitations we took spectra of the emission at small angles to the exciting beam and found the lines to have widths less than our instrumental resolution and frequencies which accurately tuned with the incident laser frequency. We recorded the emission lines for laser frequencies in the absorption line center and out into the absorption wing. Our spectra show that the intensity of the emission lines follows the absorption line profile while the frequency of the emission lines is determined by the laser frequency; the intensity is maximum at the absorption line center, falling by 104 as the laser frequency is moved off the line center, while the line position maintains a constant frequency shift from the laser frequency.  相似文献   

10.
X. Gao  the EAST team 《Physics letters. A》2008,372(13):2286-2290
The first plasma was obtained in the EAST on September 26th, 2006. Single-null (SN) and double-null (DN) diverted plasmas were achieved successfully in the EAST tokamak on January 22nd, 2007. The employed plasma diagnostics for first plasma study of EAST are as follows: a vertical one-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer for measuring the line average density, a 10-channel soft X-ray array for intensity measurement, a 16-channel heterodyne Electron Cyclotron Emission (ECE) for measuring the electron temperature profile, a 8-channel XUV bolometer array to measure plasma radiation losses, a 3-channel hard X-ray array for intensity measurement, an electromagnetic measurement system, a 35-channel Hα radiation array, 20 probes for divertor plasma, a one-channel visible bremsstrahlung emission, an impurity optical spectrum measurement system and two optical spectroscopic multi-channel analyzers (OMA). The first experimental results of diagnostic systems are summarized in this Letter.  相似文献   

11.
In this work, the continuum spectrum of X-rays originated from the interaction of a moderate intensity ns Nd:YAG laser (1064 nm, 9 ns, 30 Hz, 900 mJ, 1011 W/cm2) with Ta target producing plasma is investigated. Plasma expands unisotropically with a velocity, depending on the pressure of the residual gas in the vacuum chamber. The X-ray intensity is a function of the laser energy and of the gas pressure inside the chamber. The X-ray energy is measured with an X-ray filter positioned in front of the Si(Li) solid-state detector. A temperature of about ~1–2 keV of the hot electrons, responsible for the continuum spectrum emission from the plasma, is calculated from the fit of the X-ray spectrum, applying a Maxwellian distribution.  相似文献   

12.
We realize a Ne-like Ar 46.9 nm soft X-ray laser pumped by a capillary discharge. The study of the laserpulse-intensity distribution is important for applications of soft X-ray lasers. The intensity distribution demonstrates the gain distribution, plasma radius, and axial plasma density that contribute to the study of the laser-pulse formation. To measure the intensity in different positions of the X-ray laser spot, we moved transversally an X-ray diode (XRD) assembled with a slit. We obtain the onedimensional intensity distribution. We find a laser divergence (FWHM) of 4.0 mrad. According to the gain-guided model, we calculate the intensity distribution. The measured divergence of 4.0 mrad roughly corresponds to a plasma radius a approximately equal to 230–250 μm and on-axis electron density n e 8.0?1018 ?9.0?1018 cm ?3. The results of calculations indicate that the divergence of the intensity distribution increases when the plasma radius decreases and the on-axis electron density increases.  相似文献   

13.
Microdroplets of 15-μm diameter are subjected to ultra-short laser pulses of intensities up to 1015Wcm−2 to produce hot dense plasma. The hot electrons produced in the microdroplet plasma result in efficient generation of hard X-rays in the range 50–150keV at an irradiance as low as 8×1014Wcm−2. The X-ray source efficiency is estimated to be about 2 ×10−7%. A prepulse that is about 11ns ahead of the main pulse strongly influences the droplet plasma and the resulting X-ray emission. For a similar laser prepulse and intensity, no measurable hard X-ray emission is observed when the laser is focused on a solid target of similar composition and this indicates that liquid droplet targets are best suited for hard X-ray generation in laser–plasma interactions.  相似文献   

14.
Parametric dependence of the intensity of 182 Å Balmer-α line (C5+; n = 3 → 2), relevant to xuv soft X-ray lasing schemes, from laser-produced carbon plasma is studied in circular spot focusing geometry using a flat field grating spectrograph. The maximum spectral intensity for this line in space integrated mode occurred at a laser intensity of 1.2 × 1013 W cm?2. At this laser intensity, the space resolved measurements show that the spectral intensity of this line peaks at ~1.5 mm from the target surface indicating the maximum population of C5+ ions (n = 3), at this distance. From a comparison of spatial intensity variation of this line with that of C5+ Ly-α (n = 2 → 1) line, it is inferred that n = 3 state of C5+ ions is predominantly populated through three-body recombination pumping of C6+ ions of the expanding plasma consistent with quantitative estimates on recombination rates of different processes.  相似文献   

15.
A continuum spectrum of X-rays, originating from the interaction of a moderate intensity nanosecond Nd:Yag laser (1064 nm, 9 ns, 30 Hz, 900 mJ, 1011 W/cm2) with metal targets producing plasma, is investigated. The photon emission intensity is particularly high when the plasma expands in a low-pressure gas. The photon energy is measured through selective thin absorber films employed in front of the solid state detector. The temperature of the hot electrons generated from the plasma, responsible for the continuum spectrum emission, is calculated from the fit of the X-ray spectrum with a Maxwellian distribution, and it is about 1–2 keV.  相似文献   

16.
Studies of the X-ray emission from nsec CO2 laser produced plasmas indicate a stronger deviation of the electron distribution from equilibrium for a (CH2)n plasma than for an A1 plasma. The lowest spectral temperature measured is ~ 300 eV at the maximum flux of 5 × 1012W·cm-2.  相似文献   

17.
Summary Soft-X-ray generation in aluminium plasmas produced by Nd nano-second laser pulses is investigated analysing time-resolved spectra ofK-shell line emission. Time histories of line emission and electron temperature as well as the time-integrated X-ray yield were studied as a function of laser pulse duration and target position along the laser beam propagation axis. The experimental results suggest that X-ray emission is influenced by self-focusing of laser light in the plasma. Presently at Laboratoire pour l'Utilisations des Lasers Intenses, Ecole Polytechnique, 91128 Palaiseau Cedex, France.  相似文献   

18.
The spectra and dynamics of the line emission of a lead erosion laser plasma at a distance of 1 mm from the target are investigated. The plasma is ignited in a vacuum (P=3–12 Pa) with a pulse-periodic neody-mium laser (τ=20 ns, f=12 Hz, W=(1–2)×109 W/cm2, and λ=1.06 µm). The data obtained are used to analyze the emission dynamics and the mechanism of formation of the laser plume.  相似文献   

19.
Gordienko  V. M.  Zhvania  I. A.  Makarov  I. A. 《Laser Physics》2008,18(4):380-386
The dynamics of the hard X-ray yield is studied as a function of the laser-shot number, and the maximum temperature of the hot electron plasma component in the channel formed by a sequence of tightly focused near-IR femtosecond laser pulses (τ = 110 fs, λ = 1.24 μm, and I = 1015–1016 W/cm2) in air at various pressures (P = 0.01–760.00 Torr) is analyzed. The dependence of the depth of the channel in which the hard X rays are generated with the highest efficiency on the air pressure and the laser focusing is obtained. The electron concentration in air plasma in the laser beam waist is estimated using the spectral shift of the second harmonic radiation that is back reflected from the target channel.  相似文献   

20.
We have measured the X-ray emission spectra of a plasma generated by laser radiation with an intensity above 1019W/cm2 and a pulse duration of 30 fs acting upon an argon jet target with a large abundance of micron-sized clusters. The time variation of the X-ray yield from ions of various multiplicities, calculated within the framework of a nonstationary kinetic model, shows a good qualitative agreement with the experimental time-integrated spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号