首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid-liquid extraction of uranium(VI) (UO2 2+) from aqueous acidic (HCl and HNO3) solutions into a co-existing organic phase containing Alamine 308 (triisooctyl amine), TBP (tri-n-butyl phosphate) or CYANEX 302 (bis(2,4,4-trimethylpentyl) monothiophosphinic acid) and diluent (toluene) was studied at isothermal conditions (298.2 K) at aqueous phase acidity varying in the range 0.5-6 mol/dm3. All solvent systems exhibit a maximum distribution ratio restricted in the acidity range 3-4 mol/dm3. An obvious difference in extraction behavior through amine system has been observed for two acids, HCl and HNO3, distinguishing the divergent interactions attributed to the different mechanism of complexation depending on the acidic medium. The high degree of separation of UO2 2+ from HNO3 solution is feasible through a complex formation with extractants ranging in the order CYANEX 302 > TBP > Alamine 308. The results were correlated using various versions of the mass action law, i.e., a chemodel approach and a modified version of the Langmuir equilibrium model comprising the formation of one or at least two U(VI)-extractant aggregated structures.  相似文献   

2.
The extraction of uranium(VI) from sulfuric acid medium with tri-octylphosphine oxide (TOPO) in n-heptane was studied. Accompanied with the increase in the concentration of H2SO4, the distribution coefficient of uranium(VI) increased in the region of dilute sulfuric acid. When the concentration of H2SO4 surpassed 3.5 mol·dm−3, the distribution coefficient of uranium(VI) was at maximum. This result was due to the competition extraction between uranium(VI) and H2SO4. From the data, the composition of extracted species and the equilibrium constant of extraction reaction have been evaluated, which were (TOPOH)2UO2(SO4)2 (TOPO) and 107.6±0.15, respectively.  相似文献   

3.
4.
5.
Olive cake as low-cost abundantly available sorbent has been characterized by N2 at 77 K adsorption, porosity analysis, elemental analysis and IR spectra and has been used for preconcentrating of uranium(VI) and thorium(IV) ions prior to their determination spectrophotometrically. The optimum pH values for quantitative sorption of U(VI) and Th(IV) are 4–7 and 3–7, respectively. The enrichment factor for the preconcentration of U(VI) and Th(IV) were found to be 125 and 75 in the given order. The sorption capacity of olive cake is in the range of 2,260–15,000 μg g−1 for Th(IV) and in the range of 1,090–17,000 μg g−1 for U(VI) at pH 3–7. The sorbent exhibits good reusability and the uptake and stripping of the studied ions were fairly rapid. The elution of U(VI) and Th(IV) was performed with 0.3–1 M HCl/1–2 M HNO3 and 0.3–0.8 M HCl/1 M HNO3, respectively. The precision of the method was 1.8 RSD% for U(VI) and 2.5 RSD% for Th(IV) in a concentration of 1.00 μg mL−1 for 10 replicate analysis. The influence of some electrolytes and cations as interferents was discussed. Separation of U(VI) and Th(IV) from other metal ions in synthetic solution was achieved.  相似文献   

6.
This study described adsorption of uranium(VI) by citric acid modified pine sawdust (CAMPS) in batch and fixed-bed column modes at 295 K. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Koble–Corrigan and Dubinin–Radushkevich isotherm models. The results indicated that the Langmuir and Koble–Corrigan models provided the best correlation of the experimental data. The Elovish model was better to fit the kinetic process, which suggested that ion exchange was one of main mechanism. The effective diffusion parameter D i values indicated that the intraparticle diffusion was not the rate-controlling step. In fixed-bed column adsorption, the effects of bed height, feed flow rate, and inlet uranium (VI) concentration were studied by assessing breakthrough curve. The Thomas, the Yan and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The results were implied that CAMPS may be suitable as an adsorbent material for adsorption of uranium (VI) from an aqueous solution.  相似文献   

7.
The adsorption of uranium (VI) from aqueous solutions onto natural sepiolite has been studied using a batch adsorber. The parameters that affect the uranium (VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated and optimized conditions determined. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of sepiolite and experimental results showed this to be 34.61 mg · g?1. The experimental results were correlated reasonably well by the Langmuir adsorption isotherm and the isotherm parameters (Qo and b) were calculated. Thermodynamic parameters (ΔH° = ?126.64 kJ · mol?1, ΔS° = ?353.84 J · mol?1 · K?1, ΔG° = ?21.14 kJ · mol?1) showed the exothermic heat of adsorption and the feasibility of the process. The results suggested that sepiolite was suitable as sorbent material for recovery and adsorption of uranium (VI) ions from aqueous solutions.  相似文献   

8.
Natural zeolitic materials (sedimentary zeoliferous rocks) were organo-modified using polyhexamethyleneguanidine-chloride in order to enhance their anionic sorptive properties. The sorption of As(V)-anions from aqueous solutions [As(V) concentration range from 10 to 1000 mg/l] was investigated using radiochemical techniques. The samples exhibited an elevated tendency to sorb As(V)-anions (up to 6.73 mg/g) and the relative uptake was found to be much higher for solutions of low initial concentrations (up to 99.8% removal). The different As(V) species (mainly HAsO4 2−) are principally sorbed through ion-exchange reactions by the net of the polymeric, compound covering the mineral aggregates of the samples. The investigated materials could be considered for the removal of As(V) anionic species present in industrial or municipal wastewaters.  相似文献   

9.
The adsorption of the uranyl ions from aqueous solutions on the nanoporous ZnO powders has been investigated under different experimental conditions. The adsorption of uranyl on nanoporous ZnO powders were examined as a function of the contact times, pH of the solution, concentration of uranium(VI) and temperature. The ability of this material to remove U(VI) from aqueous solution was followed by a series of Langmuir and Freunlinch adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders were 98.65 % ± 1.05 and 7,304 mL g?1, respectively. The optimum conditions were found as at pH 5.0, contact time 1 h, at 1/5 Zn2+/urea ratio, 50 ppm U(VI) concentration and 303 K. The monomolecular adsorption capacity of nanoporous ZnO powders for U(VI) was found to be 1,111 mg g?1 at 303 K. Using the thermodynamic equilibrium constants obtained at different temperatures, various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, have been calculated. Thermodynamic parameters (ΔH° = 28.1 kJ mol ?1, ΔS° = 160.30 J mol?1 K?1, ΔG° = ?48.54 kJ mol?1) showed the endothermic and spontaneous of the process. The results suggested that nanoporous ZnO powders was suitable as sorbent material for recovery and adsorption of U(VI) ions from aqueous solutions.  相似文献   

10.
Direct reduced iron (DRI), also called sponge iron, was used for the removal of U(VI) from aqueous solution. Batch experiments were conducted to evaluate the effect of various factors including contact time, solution pH, DRI dosage and initial uranium concentration on this removal process. The result suggested that U(VI) can be rapidly removed by DRI and this removal process followed an apparent first-order reaction kinetics. The optimum pH for uranium removal was between 2.0 and 4.0. Whether U(VI) can be fully removed was influenced by the molar ratio of DRI to U(VI) in solution. The aqueous U(VI) can be removed completely when this ratio was more than ca. 1,000. The U(VI) removal capacities of DRI decreased with increasing DRI dosages at a constant concentration of U(VI), but increased almost linearly with increasing initial U(VI) concentrations at a fixed dosage of DRI. The maximum U(VI) removal capacity was 5.71 mg/g DRI. Finally, the possible mechanism of U(VI) removal by DRI was also discussed. The XPS and XRD analysis showed that U(VI) was deposited as UO3 onto DRI surface, indicating that U(VI) can be removed without reduction.  相似文献   

11.
The effect of sorbent consumption and the kinetics and mechanism of sorption of uranium(VI) compounds on the surface of FIBAN A-6 fibrous anion exchanger from aqueous uranyl acetate solutions have been studied in the presence of sulfuric acid or sodium hydrocarbonate. The degree of sorption of uranium(VI) compounds by FIBAN A-6 anion exchanger has been found to be as high 97.0–99.5% at an interfacial contact time of 3–7 min and a sorbent consumption of 2–5 g/dm3. Diffusion and chemical kinetics models have been employed to show that the sorption kinetics of uranyl sulfate and carbonate complexes corresponds to the mixed diffusion mechanism and is described by a pseudo-second-order equation. The sorption isotherms of uranium(VI) compounds have the pattern of L-type isotherms according to the Giles classification and are satisfactorily described by the Langmuir, Freundlich, and Dubinin–Radushkevich equations. It has been found that, within 40 min, the sorbent may be regenerated by 65–82% with a 1 M NaHCO3 solution.  相似文献   

12.
13.
14.
The effect of TBP as well as the organic diluents on the polarographic wave of U(VI) reduction has been investigated in sulphuric and perchloric acids. It was found that the presence of TBP traces in the solution to be analyzed induced another wave which was more prominent in sulphuric acid solutions. This can be eliminated by boiling the solutions for about 5 min before their analysis for uranium. The effect of supporting electrolyte on the polarographic reduction of U(VI) was also studied and the use of 6N HClO4 was recommended.  相似文献   

15.
Adsorption behavior of uranyl and thorium ions from synthetic radioactive solutions onto functionalized silica as sorbent has been investigated. The effect of contact time, initial concentration of radioactive solutions, sorbent mass, pH value and temperature on the adsorption capacity of the sorbent was investigated. Negative values of Gibbs free energy of adsorption suggested the spontaneity of the adsorption process on both functionalized silica with –NH2 groups and with –SH groups. Positive values obtained for ΔH° indicates that the adsorption is an endothermic process. The adsorption isotherms were better fitted by Freundlich model and the adsorption kinetic was well described by the pseudo-second order equation. Desorption studies indicated that the most favorable desorptive reagents for UO2 2+ is HNO3 1 M and for Th4+ is EDTA 1 M solutions.  相似文献   

16.
The kinetics of solvent extraction of U (IV), Th (IV) and U (VI) from nitric acid solution with tributyl phosphate (TBP) in kerosene and cyclohexane have been studied using the single drop technique. The effects of concentrations of U (IV), Th (IV), U (VI), nitric acid, nitrate, TBP and temperature on the extraction rates of U (IV), Th (IV) and U (VI) have been examined. The mechanisms for the three extraction processes are discussed.  相似文献   

17.
18.
Journal of Radioanalytical and Nuclear Chemistry - In this study, iron oxide nanoparticles (Fe3O4) and iron oxide nanoparticles with humic acid coatings (Fe3O4/HA) were investigated for the removal...  相似文献   

19.
In this study, poly(acrylic acid-co-acrylamide) (PAAAM) hydrogels were used to remove uranium (VI) ions in wastewater and characterized by FTIR, SEM, EDX. The effects of pH value, coexistence of ionic strength, contact time, initial U (VI) ion concentration and adsorption temperature were also studied. Adsorption data fitted well with pseudo-second-order, intra-particle diffusion model and Langmuir isotherm mode, the maximum adsorption capacity of U(VI) was 713.24 mg g?1. Thermodynamic analysis shows that the adsorption of U(VI) is spontaneous endothermic. PAAAM hydrogel has excellent regeneration performance, after five time adsorption–desorption cycles, the adsorbent still maintained 99.24% adsorption capacity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号