首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of the study of structural and electronic properties of the 8-ZGNR/h-BN(001) heterostructure by the pseudopotential method using plane waves within density functional theory are presented. Within one approximation the features of the spin state at the Fermi level are studied along with the role of the edge and substrate effects in the opening of the energy gap in the 8-ZGNR/h-BN(001) heterostructure in both ferromagnetic and antiferromagnetic orderings. The effect of a substrate made of hexagonal boron nitride was found for the first time. It consists in the opening of the energy gap in the π electron spectrum of the 8-ZGNR/h-BN(001) heterostructure for the ferromagnetic spin ordering. It is shown that the gap was 30 meV. Contributions of the edge effects of the graphene nanoribbon and the substrate to the energy gap formation are differentiated for the first time. It is found that in the 8-ZGNR/h-BN(001) heterostructure the dominant role in the opening of the energy gap at the Fermi level is played by the edge effects. However, when the nanoribbon width decreases, e.g., to six dimmers the substrate role in the gap opening increases and amounts to 45%. Local magnetic moments of carbon atoms are estimated. It is shown that small magnetic moments are induced on boron and nitrogen atoms at the interface.  相似文献   

2.
Three‐dimensional, vertically aligned MnO/nitrogen‐doped graphene (3D MnO/N‐Gr) walls were prepared through facile solution‐phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross‐links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as‐prepared 3D MnO/N‐Gr hybirdes provide a large surface area (91.516 m2 g?1) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g?1 at 0.25 A g?1 and an excellent charge/discharge stability (93.7 % capacity retention after 8000 cycles) in aqueous 1 m Na2SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N‐Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg?1 and a power density of 437.5 W kg?1.  相似文献   

3.
Introduction of defects and nitrogen doping are two of the most pursued methods to tailor the properties of graphene for better suitability to applications such as catalysis and energy conversion. Doping nitrogen atoms at defect sites of graphene and codoping them along with boron atoms can further increase the efficiency of such systems due to better stability of nitrogen at defect sites and stabilization provided by B?N bonding. Systematic exploration of the possible doping/codoping configurations reflecting defect regions of graphene presents a prevalent doping site for nitrogen‐rich BN clusters and they are also highly suitable for modulating (0.2–0.9 eV) the band gap of defect graphene. Such codoped systems perform significantly better than the platinum surface, undoped defect graphene, and the single nitrogen or boron atom doped defect graphene system for dioxygen adsorption. Significant stretching of the O?O bond indicates a lowering of the bond breakage barrier, which is advantageous for applications in the oxygen reduction reaction.  相似文献   

4.
Integration of graphene into macroscopic architectures represents the first step toward creating a new class of graphene-based nanodevices. We report a novel yet simple approach to fabricate graphene fibers, a porous and monolithic macrostructure, from chemical vapor deposition grown graphene films. Graphene is first self-assembled from a 2D film to a 1D fiberlike structure in an organic solvent (e.g., ethanol, acetone) and then dried to give the porous and crumpled structure. The method developed here is scalable and controllable, delivering tunable morphology and pore structure by controlling the evaporation of solvents with suitable surface tension. The fibers are 20-50 μm thick, with a typical electrical conductivity of ~1000 S/m. The cyclic voltammetric studies show typical capacitive behavior for the porous graphene fibers with good rate stability and capacitance values ranging from 0.6 to 1.4 mF/cm(2). Decorated with only 1-3 wt % MnO(2), the graphene/MnO(2) composites exhibit remarkable enhancement of combined performance both with respect to discharge capacitance (up to 12.4 mF/cm(2)) and cycling stability. This special structure could facilitate chemical doping and electrochemical energy storage and find applications in catalyst supports, sensors, supercapacitors, Li ion batteries, etc.  相似文献   

5.
We use anhydrous ferric chloride (FeCl(3)) to intercalate graphite flakes consisting of 2-4 graphene layers and to dope graphene monolayers. The intercalant, staging, stability, and doping of the resulting intercalation compounds (ICs) are characterized by Raman scattering. The G peak of heavily doped monolayer graphene upshifts to ~1627 cm(-1). The 2-4 layer ICs have similar upshifts, and a Lorentzian line shape for the 2D band, indicating that each layer behaves as a decoupled heavily doped monolayer. By performing Raman measurements at different excitation energies, we show that, for a given doping level, the 2D peak can be suppressed by Pauli blocking for laser energy below the doping level. Thus, multiwavelength Raman spectroscopy allows a direct measurement of the Fermi level, complementary to that derived by performing measurements at fixed excitation energy significantly higher than the doping level. This allows us to estimate a Fermi level shift of up to ~0.9 eV. These ICs are thus ideal test-beds for the physical and chemical properties of heavily doped graphenes.  相似文献   

6.
The effect of the chemical surface passivation, with hydrogen atoms, on the energy band gap of porous cubic silicon carbide (PSiC) was investigated. The pores are modeled by means of the supercell technique, in which columns of Si and/or C atoms are removed along the [001] direction. Within this supercell model, morphology effects can be analyzed in detail. The electronic band structure is performed using the density functional theory based on the generalized gradient approximation. Two types of pores are studied: C‐rich and Si‐rich pores surface. The enlargement of energy band gap is greater in the C‐rich than Si‐rich pores surface. This supercell model emphasizes the interconnection between 3C‐SiC nanocrystals, delocalizing the electronic states. However, the results show a clear quantum confinement signature, which is contrasted with that of nanowire systems. The calculation shows a significant response to changes in surface passivation with hydrogen. The chemical tuning of the band gap opens the possibility plenty applications in nanotechnology. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2455–2461, 2010  相似文献   

7.
Developing graphene‐like two‐dimensional materials naturally possessing a band gap has sparked enormous interest. Thanks to the inherent wide band gap and high mobility in the 2D plane, covalent organic frameworks containing triazine rings (t‐COFs) hold great promise in this regard, whilst the synthesis of single‐layer t‐COFs remains highly challenging. Herein, we present the fabrication of a well‐defined graphene‐like t‐COF on Au(111). Instead of single/multiple‐step single‐type reactions commonly applied for on‐surface synthesis, distinct stepwise on‐surface reactions, including alkynyl cyclotrimerization, C?O bond cleavage, and C?H bond activation, are triggered on demand, leading to product evolution in a controlled step‐by‐step manner. Aside from the precise control in sophisticated on‐surface synthesis, this work proposes a single‐atomic‐layer organic semiconductor with a wide band gap of 3.41 eV.  相似文献   

8.
The adsorption of six electron donor–acceptor (D/A) organic molecules on various sizes of graphene nanoflakes (GNFs) containing two common defects, double‐vacancy (5‐8‐5) and Stone–Wales (55‐77), are investigated by means of ab initio DFT [M06‐2X(‐D3)/cc‐pVDZ]. Different D/A molecules adsorb on a defect graphene (DG) surface with binding energies (ΔEb) of about ?12 to ?28 kcal mol?1. The ΔEb values for adsorption of molecules on the Stone–Wales GNF surface are higher than those on the double vacancy GNF surface. Moreover, binding energies increase by about 10 % with an increase in surface size. The nature of cooperative weak interactions is analyzed based on quantum theory of atoms in molecules, noncovalent interactions plot, and natural bond order analyses, and the dominant interaction is compared for different molecules. Electron density population analysis is used to explain the n‐ and p‐type character of defect graphene nanoflakes (DGNFs) and also the change in electronic properties and reactivity parameters of DGNFs upon adsorption of different molecules and with increasing DGNF size. Results indicate that the HOMO–LUMO energy gap (Eg) of DGNFs decreases upon adsorption of molecules. However, by increasing the size of DGNFs, the Eg and chemical hardness of all complexes decrease and the electrophilicity index increases. Furthermore, the values of the chemical potential of acceptor–DGNF complexes decrease with increasing size, whereas those of donor–DGNF complexes increase.  相似文献   

9.
Low‐lying excited states of planarly extended nanographenes are investigated using the long‐range corrected (LC) density functional theory (DFT) and the spin‐flip (SF) time‐dependent density functional theory (TDDFT) by exploring the long‐range exchange and double‐excitation correlation effects on the excitation energies, band gaps, and exciton binding energies. Optimizing the geometries of the nanographenes indicates that the long‐range exchange interaction significantly improves the C C bond lengths and amplify their bond length alternations with overall shortening the bond lengths. The calculated TDDFT excitation energies show that long‐range exchange interaction is crucial to provide accurate excitation energies of small nanographenes and dominate the exciton binding energies in the excited states of nanographenes. It is, however, also found that the present long‐range correction may cause the overestimation of the excitation energy for the infinitely wide graphene due to the discrepancy between the calculated band gaps and vertical ionization potential (IP) minus electron affinity (EA) values. Contrasting to the long‐range exchange effects, the SF‐TDDFT calculations show that the double‐excitation correlation effects are negligible in the low‐lying excitations of nanographenes, although this effect is large in the lowest excitation of benzene molecule. It is, therefore, concluded that long‐range exchange interactions should be incorporated in TDDFT calculations to quantitatively investigate the excited states of graphenes, although TDDFT using a present LC functional may provide a considerable excitation energy for the infinitely wide graphene mainly due to the discrepancy between the calculated band gaps and IP–EA values. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Ab initio density functional theory calculations of hexagonal shaped zigzag edged graphene nanodot molecules, modified by the addition of atomic H to interior and perimeter sites, predict significant changes to the hexagonally sectored spin distribution and chemical bonding of the originals. The redistribution of Kohn-Sham levels at the top of the valence manifold from parent to derivative hint at large changes in the electronic structure. A centrally added H atom creates an occupied level in the middle of the 0.3 eV band gap of the parent molecule and is surrounded by an island of spins. The latter is isolated enough from the perimeter to provide a calibration of the edge spins of the modified parent. Mid-edge addition of a H atom "quenches" the spin on the edge by drawing a p(z)-electron into the C-H bond without reducing the spin on the other edges. Addition of H to an apex carbon atom results in a localized spin freed from the double bond that coexists with the parent spin on the same edge. Saturating the apex double bond by adding two H atoms, returns π-levels shifted in energy and index and parent-like spin patterns on all edges, intact except for small changes on the edges joined at the apex. Taken in unison these results demonstrate how atomic hydrogen and other groups could be used to engineer the magnetism of graphene nanodots.  相似文献   

11.
LCAO and PW DFT calculations of the lattice constant, bulk modulus, cohesive energy, charge distribution, band structure, and DOS for UN single crystal are analyzed. It is demonstrated that a choice of the uranium atom relativistic effective core potentials considerably affects the band structure and magnetic structure at low temperatures. All calculations indicate mixed metallic-covalent chemical bonding in UN crystal with U5f states near the Fermi level. On the basis of the experience accumulated in UN bulk simulations, we compare the atomic and electronic structure as well as the formation energy for UN(001) surface calculated on slabs of different thickness using both DFT approaches.  相似文献   

12.
13.
In the light of recent experimental research on the oxygen reduction reaction (ORR) with carbon materials doped with foreign atoms, we study the performance of graphene with different defects on this catalytic reaction. In addition to the reported N‐graphene, it is found that H‐decorated and B‐substituted graphene can also spontaneously promote this chemical reaction. The local high spin density plays the key role, facilitating the adsorption of oxygen and OOH, which is the start of ORR. The source of the high spin density for all of the doped graphene is attributed to unpaired single π electrons. Meanwhile, the newly formed C? H covalent bond introduces a higher barrier to the p electron flow, leading to more localized and higher spin density for H‐decorated graphene. At the same time, larger structural distortion should be avoided, which could impair the induced spin density, such as for P‐substituted graphene.  相似文献   

14.
New Lennard‐Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all‐atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10−11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene–water interface with one O H bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air–water interface, graphene–water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air–water and graphene–water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
Interfacial bonding geometry and electronic structures of In(2)O on InAs and In(0.53)Ga(0.47)As(001)-(4×2) have been investigated by scanning tunneling microscopy/scanning tunneling spectroscopy (STM/STS). STM images show that the In(2)O forms an ordered monolayer on both InAs and InGaAs surfaces. In(2)O deposition on the InAs(001)-(4×2) surface does not displace any surface atoms during both room temperature deposition and postdeposition annealing. Oxygen atoms from In(2)O molecules bond with trough In/Ga atoms on the surface to form a new layer of O-In/Ga bonds, which restore many of the strained trough In/Ga atoms into more bulklike tetrahedral sp(3) bonding environments. STS reveals that for both p-type and n-type clean In(0.53)Ga(0.47)As(001)-(4×2) surfaces, the Fermi level resides near the valence band maximum (VBM); however, after In(2)O deposition and postdeposition annealings, the Fermi level position is close to the VBM for p-type samples and close to the conduction band minimum for n-type samples. This result indicates that In(2)O bonding eliminates surface states within the bandgap and forms an unpinned interface when bonding with In(0.53)Ga(0.47)As/InP(001)-(4×2). Density function theory is used to confirm the experimental finding.  相似文献   

16.
The effect of hydrogen on the adsorption and dissociation of the oxygen molecule on a TiO2 anatase (001) surface is studied by first‐principles calculations coupled with the nudged elastic band (NEB) method. Hydrogen adatoms on the surface can increase the absolute value of the adsorption energy of the oxygen molecule. A single H adatom on an anatase (001) surface can lower dramatically the dissociation barrier of the oxygen molecule. The adsorption energy of an O2 molecule is high enough to break the O?O bond. The system energy is lowered after dissociation. If two H adatoms are together on the surface, an oxygen molecule can be also strongly adsorbed, and the adsorption energy is high enough to break the O?O bond. However, the system energy increases after dissociation. Because dissociation of the oxygen molecule on a hydrogenated anatase (001) surface is more efficient, and the oxygen adatoms on the anatase surface can be used to oxidize other adsorbed toxic small gas molecules, hydrogenated anatase is a promising catalyst candidate.  相似文献   

17.
The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.  相似文献   

18.
Using density functional theory, we have theoretically studied dioxin binding on a graphene sheet or carbon nanotubes (CNT), finding that they can be effective adsorbents for dioxin in the presence of calcium atoms. This is due to a cooperative formation of sandwich complexes of graphene sheet or (5,5) CNT through the interaction pi-Ca-pi with the total binding energy of more than 3 eV. This correlates with the band structure analysis, which indicates charge transfer from the carbon systems and calcium atoms to dioxin when the molecule binds to the metal-doped carbon systems. For CNT with small radii, the relative strength of CNT-dioxin interaction is dependent on their chiralities. Upon dioxin binding, a large increase in the electronic density of states near the Fermi level also suggests that they can be used for dioxin sensing. Fe-doped CNT is also found to bind dioxin strongly, revealing an important role played by remnants of metallic catalysts in the chemical properties of CNT.  相似文献   

19.
The interfacial properties for a carbon nanotube on a Ni (001) surface are modeled by a piece of vertical graphene standing on a Ni (001) surface. The interaction between the graphene and the nickel (001) surface is investigated using density functional theory (DFT) calculations. Zigzag type graphene can stand on the hollow sites of the Ni (001) surface along the [linear span]110[linear span] direction. For such a configuration, Ni (001)-graphene interfacial mechanical properties are studied, and we find that Ni-Ni bonds near the interface will break first under tensile strain. C-C bond lengths near the interface are longer than the C-C bonds of graphene, and the charge density of those bonds decrease due to the formation of interfacial Ni-C bonds. It suggests that C-C bonds near the interface may break during the carbon nanotube growth processes.  相似文献   

20.
The electronic structure of M(2)O(7) double octahedral slabs with low d electron counts has been studied. It is shown that the nature of the low d-block bands is strongly dependent on the d electron count and the distortions of the layer. All d(1) systems are expected to be similar and to exhibit Fermi surfaces which result from the superposition of both one-dimensional (1D) and two-dimensional (2D) contributions. For lower d electron counts the electronic structure is quite sensitive to the existence of M-O bond alternations perpendicular to the layer and off-plane distortions of the equatorial O atoms. The Fermi surface of these systems can either be purely 2D or have 1D and 2D portions like those of the d(1) systems. It is suggested that the recently reported phase Rb(2)LaNb(2)O(7) could be a 2D metal. It is also proposed that chemical reduction of the A'[A(n)()(-)(1)Nb(n)()O(3)(n)()(+1)] Dion-Jacobson phases with n = 3 could lead to metallic conductivity, in contrast with the results for the n = 2 phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号