首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural stabilities, bonding nature, electronic properties, and aromaticity of bare iridium trimers \(\rm{Ir}_3^{+/-}\) with different geometries and spin multiplicities are studied at the DFT/B3LYP level of theory. The ground state of the \(\rm{Ir}_3^{+}\) cation is found to be the 3A2 (C2v) triplet state and the ground state of the \(\rm{Ir}_3^{-}\) anion the 5A2 (C2v) quintet state. A detailed molecular orbital (MO) analysis indicates that the ground-state \(\rm{Ir}_3^{+}\) ion (C2v, 3A2) possesses double (σ and partial δ) aromaticity as well as the ground-state \(\rm{Ir}_3^{-}\) ion (C2v, 5A2). The multiple d-orbital aromaticity is responsible for the totally delocalized three-center metal-metal bond of the triangular Ir3 framework. \(\rm{Ir}_3^{-}\) (C2v, 1A1) structure motif is perfectly preserved in pyramidal Ir3M0/+ (Cs, 1A′) and bipyramidal \(\rm{Ir}_3M_2^{+/3+}\) (C2v, 1A1) (M = Li, Na, K and Be, Ca) bimetallic clusters which also possess the corresponding d-orbital aromatic characters.  相似文献   

2.
Densities (ρ), speeds of sound (u), and viscosities (η) are reported for binary mixtures of 2-methylaniline with carboxylic acids (ethanoic acid, propanoic acid and butanoic acid) over the entire composition range of mole fraction at T?=?(303.15–318.15) K and at atmospheric pressure (0.1 MPa). The excess properties such as excess molar volume (V m E ), excess isentropic compressibility (κ S E ) and excess Gibbs energy of activation of viscous flow (G*E) are calculated from the experimental densities, speeds of sound and viscosities. Excess properties are correlated using the Redlich–Kister polynomial equation. The partial molar volumes, \( \bar{V}_{\text{m,1}} \) and \( \bar{V}_{\text{m,2}} \), partial molar isentropic compressibilities, \( \bar{K}_{\text{s,m,1}} \) and \( \bar{K}_{\text{s,m,2}} \), excess partial molar volumes, \( \bar{V}_{\text{m,1}}^{\text{E}} \) and \( \bar{V}_{\text{m,2}}^{\text{E}} \), and excess partial molar isentropic compressibilities, \( \bar{K}_{\text{s,m,1}}^{\text{E}} \) and \( \bar{K}_{\text{s,m,2}}^{\text{E}} \), over whole composition range, partial molar volumes, \( \bar{V}_{\text{m,1}}^{ \circ } \) and \( \bar{V}_{\text{m,2}}^{ \circ } \), partial molar isentropic compressibilities, \( \bar{K}_{\text{s,m,1}}^{ \circ } \) and \( \bar{K}_{\text{s,m,2}}^{ \circ } \), excess partial molar volumes, \( \bar{V}_{\text{m,1}}^{{ \circ {\text{E}}}} \) and \( \bar{V}_{{{\text{m}},2}}^{{ \circ {\text{E}}}} \), and excess partial molar isentropic compressibilities, \( \bar{K}_{\text{s,m,1}}^{{ \circ {\text{E}}}} \) and \( \bar{K}_{\text{s,m,2}}^{{ \circ {\text{E}}}} \), of the components at infinite dilution have also been calculated from the analytically obtained Redlich–Kister polynomials. The excess molar volume VE results are analyzed using the Prigogine–Flory–Patterson theory. Analysis of each of the three contributions viz. interactional VE(int.), free volume VE(fv.) and characteristic pressure p* to VE showed that the interactional contributions are positive for all systems while the free volume and characteristic pressure p* contributions are negative for all the binary mixtures. The results are analyzed in terms of attractive forces between 2-methylaniline and carboxylic acids molecules. Good agreement is obtained between excess quantities and spectroscopic data.  相似文献   

3.
A new high-nitrogen complex [Cu(Hbta)2]·4H2O (H2bta = N,N-bis-(1(2)H-tetrazol-5-yl) amine) was synthesized and characterized by elemental analysis, single crystal X-ray diffraction and thermogravimetric analyses. X-ray structural analyses revealed that the crystal was monoclinic, space group P2(1)/c with lattice parameters a = 14.695(3) Å, b = 6.975(2) Å, c = 18.807(3) Å, β = 126.603(1)°, Z = 4, D c = 1.888 g cm?3, and F(000) = 892. The complex exhibits a 3D supermolecular structure which is built up from 1D zigzag chains. The enthalpy change of the reaction of formation for the complex was determined by an RD496–III microcalorimeter at 25 °C with the value of ?47.905 ± 0.021 kJ mol?1. In addition, the thermodynamics of the reaction of formation of the complex was investigated and the fundamental parameters k, E, n, \( \Updelta S_{ \ne }^{{{\uptheta}}} \), \( \Updelta H_{ \ne }^{{{\uptheta}}} \), and \( \Updelta G_{ \ne }^{{{\uptheta}}} \) were obtained. The effects of the complex on the thermal decomposition behaviors of the main component of solid propellant (HMX and RDX) indicated that the complex possessed good performance for HMX and RDX.  相似文献   

4.
Madelung's coefficientM a of aragonite has been calculated considering the non-spherical shape of the CO 3 2? -ions. As a result of the multipole expansionM a has been found as a function of the C?O-distanced and the charge on the oxygen atomq o to:
$$\begin{gathered} M_a = \frac{1}{4}\left\{ {10,4446---\left[ {0,65849 + \sum\limits_{n = 1}^{10} {A_n \left( {\frac{{d---0,8}}{a}} \right)^n } } \right]} \right\} \cdot q_o \hfill \\ \left. \begin{gathered} \hfill \\ ---\left[ {0,11066 + \sum\limits_{n = 1}^{12} {B_n \left( {\frac{{d---0,8}}{a}} \right)} ^n } \right] \cdot q_o^2 \hfill \\ \end{gathered} \right\}. \hfill \\ \end{gathered}$$  相似文献   

5.
Nicotinic acid (also known as niacin) was recrystallized from anhydrous ethanol. X-ray crystallography was applied to characterize its crystal structure. The crystal belongs to the monoclinic system, space group P2(1)/c. The crystal cell parameters are a = 0.71401(4) nm, b = 1.16195(7) nm, c = 0.71974(6) nm, α = 90°, β = 113.514(3)°, γ = 90° and Z = 4. Molar enthalpies of dissolution of the compound, at different molalities m/(mol·kg?1) were measured with an isoperibol solution–reaction calorimeter at T = 298.15 K. The molar enthalpy of solution at infinite dilution was calculated, according to Pitzer’s electrolyte solution model and found to be \( \Delta_{\text{sol}} H_{m}^{\infty } = ( 2 7. 3 \pm 0. 2) \) kJ·mol?1 and Pitzer’s parameters (\( \beta_{{\text{MX}}}^{{\text{(0)}L}} \), \( \beta_{{\text{MX}}}^{{\text{(1)}L}} \) and \( C_{{\text{MX}}}^{\phi L} \)) were obtained. The values of apparent relative molar enthalpies (\( {}^{\phi }L \)) and relative partial molar enthalpies (\( \overline{{L_{2} }} \) and \( \overline{{L_{1} }} \)) of the solute and the solvent at different molalities were derived from the experimental enthalpy of dissolution values of the compound. Also, the standard molar enthalpy of formation of the anion \( {\text{C}}_{ 6} {\text{H}}_{ 4} \text{NO}_{2}^{-} \) in aqueous solution was calculated to be \( {\Delta_{\text{f}}^{} H}_{\text{m}}^{\text{o}} ({\text{C}}_{ 6} {\text{H}}_{ 4} {\text{NO}}_{2}^{-} \text{,aq}) = - \left( {603.2 \pm 1.2} \right)\;{\text{kJ}}{\cdot}{\text{mol}}^{-1} \).  相似文献   

6.
A potentiometric method has been used for the determination of the protonation constants of N-(2-hydroxyethyl)iminodiacetic acid (HEIDA or L) at various temperatures 283.15?≤?T/K?≤?383.15 and different ionic strengths of NaCl(aq), 0.12?≤?I/mol·kg?1?≤?4.84. Ionic strength dependence parameters were calculated using a Debye–Hückel type equation, Specific Ion Interaction Theory and Pitzer equations. Protonation constants at infinite dilution calculated by the SIT model are \( \log_{10} \left( {{}^{T}K_{1}^{\text{H}} } \right) = 8.998 \pm 0.008 \) (amino group), \( \log_{10} \left( {{}^{T}K_{2}^{\text{H}} } \right) = 2.515 \pm 0.009 \) and \( \log_{10} \left( {{}^{T}K_{3}^{\text{H}} } \right) = 1.06 \pm 0.002 \) (carboxylic groups). The formation constants of HEIDA complexes with sodium, calcium and magnesium were determined. In the first case, the formation of a weak complex species, NaL, was found and the stability constant value at infinite dilution is log10KNaL?=?0.78?±?0.23. For Ca2+ and Mg2+, the CaL, CaHL, CaL2 and MgL species were found, respectively. The calculated stability constants for the calcium complexes at T?=?298.15 K and I?=?0.150 mol·dm?3 are: log10βCaL?=?4.92?±?0.01, log10βCaHL?=?11.11?±?0.02 and \( \log_{10} \beta_{\text{Ca{L}}_{2}} \)?=?7.84?±?0.03, while for the magnesium complex (at I?=?0.176 mol·dm?3): log10βMgL?=?2.928?±?0.006. Protonation thermodynamic functions have also been calculated and interpreted.  相似文献   

7.
The kinetics of base hydrolysis of tris(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II), \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) has been studied in aqueous, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) media at 25, 35 and 45 °C under pseudo-first-order conditions, i.e. \( [ {\text{OH}}^{ - } ]\gg [{\text{Fe(PDT)}}_{ 3}^{2 + } ] \). The reactions are first order in both of substrate \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) and hydroxide ion. The rates decrease with increasing ionic strength in aqueous and CTAB media, whereas SDS medium shows little ionic strength effect. The rate also increases with CTAB concentration but decreases with SDS. The specific rate constant, k and thermodynamic parameters (E a, ΔH #, ΔS # and ΔG #) have also been evaluated. The near equal values of ΔG # obtained in aqueous and CTAB media suggest that these reactions occur essentially by the same mechanism such that \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) reacts with OH? in the rate-determining step. The ionic strength effect in SDS medium suggests that the rate-determining step involves an ion and a neutral species. The results in this study are compared with those obtained for other iron(II)-bipyridine complexes.  相似文献   

8.
Some equilibria involving gold(I) thiomalate (mercaptosuccinate, TM) complexes have been studied in the aqueous solution at 25 °C and I?=?0.2 mol·L?1 (NaCl). In the acidic region, the oxidation of TM by \( {\text{AuCl}}_{4}^{ - } \) proceeds with the formation of sulfinic acid, and gold(III) is reduced to gold(I). The interaction of gold(I) with TM at nTM/nAu?≤?1 leads to the formation of highly stable cyclic polymeric complexes \( {\text{Au}}_{m} \left( {\text{TM}} \right)_{m}^{*} \) with various degrees of protonation depending on pH. In general, the results agree with the tetrameric form of this complex proposed in the literature. At nTM/nAu?>?1, the processes of opening the cyclic structure, depolymerization and the formation of \( {\text{Au}}\left( {\text{TM}} \right)_{2}^{*} \) occur: \( {\text{Au}}_{4} ( {\text{TM)}}_{4}^{8 - } + {\text{TM}}^{3 - } \rightleftharpoons {\text{Au}}_{ 4} ( {\text{TM)}}_{5}^{11 - } \), log10 K45?=?10.1?±?0.5; 0.25 \( {\text{Au}}_{4} ( {\text{TM)}}_{4}^{8 - } + {\text{TM}}^{3 - } \rightleftharpoons {\text{Au(TM)}}_{2}^{5 - } \), log10 K12?=?4.9?±?0.2. The standard potential of \( {\text{Au(TM)}}_{2}^{5 - } \) is \( E_{1/0}^{ \circ } = -0. 2 5 5\pm 0.0 30{\text{ V}} \). The numerous protonation processes of complexes at pH?<?7 were described with the use of effective functions.  相似文献   

9.
Densities, ρ, and viscosities, η, of pure isobutanol, 1-amino-2-propanol, and 1-propanol, along with their binary mixtures of {x 1isobutanol + x 21-propanol}, {x 11-amino-2-propanol + x 21-propanol}, and {x 11-amino-2-propanol + x 2isobutanol} were measured over the entire composition range and at temperatures (293.15–333.15) K at ambient pressure (81.5 kPa). Excess molar properties such as the excess molar volume, V m E , partial molar volumes, \( \bar{V}_{1} \) and \( \bar{V}_{2} \), excess partial molar volumes, \( \bar{V}_{1}^{\text{E}} \) and \( \bar{V}_{2}^{\text{E}} \), thermal expansion coefficient, α, excess thermal expansion coefficient, α E, viscosity deviation, Δη, and the excess Gibbs energy of activation, ?G E*, for the binary mixtures were calculated from the experimental values of densities and viscosities. The excess values of the binary mixtures are negative in the entire composition range and at all temperatures, and increase with increasing temperature. Viscosity deviations, Δη, are negative over the entire composition range and decrease with increasing temperature. The viscosities of the mixtures were correlated by the models of McAllister, Heric, Hind, Katti, and Nissan. The obtained data were correlated by Redlich–Kister equation and the fitting parameters and standard deviations were determined.  相似文献   

10.
The Gibbs free energy of mixing of the system NaCl(l)?Na(l) is calculated by two methods:
  1. 1.
    The excess Gibbs free energy ΔG E is represented by aRedlich—Kister equation
    $$\begin{gathered} \Delta G^E = x(1 - x)\{ (h_{_1 } - T_{s_1 } ) + (2x - 1)(h_{_2 } - T_{s_2 } ) + \hfill \\ + (2x - 1)^2 (h_{_3 } - T_{s_3 } )\} . \hfill \\ \end{gathered} $$  相似文献   

    11.
    Medium pressure (~ 10 torr) low frequency (3–5 kHz) glow discharge (LFGD) plasmas were applied to treat wheat (Triticum aestivum) seeds to investigate the effects on water absorption, seed germination rate, seedling growth and yield. The LFGD plasmas were produced with air and air/O 2. Optical emission spectroscopic diagnostic methods were revealed that the \({\text{N}}_{2} \left( {{\text{C}}^{3}\Pi _{\text{u}} - {\text{B}}^{3}\Pi _{\text{g}} } \right)\), \({\text{N}}_{2}^{ + } \left( {{\text{B}}^{2}\Sigma _{\text{u}}^{ + } - {\text{X}}^{2}\Sigma _{\text{g}}^{ + } } \right)\) and \({\text{N}}_{2} \left( {{\text{B}}^{3}\Pi _{\text{g}} - {\text{A}}^{3}\Sigma _{\text{u}}^{ + } } \right)\) produced with air, and O species were produced along with nitrogen species with air/O 2 plasmas, respectively. The SEM images were revealed that the surface architectures and functionalities of the seeds were modified due to plasma treatments. Water absorption was found to increase with treatment time. 6 min treatment was provided 95–100% seed germination. The plants grown from treated seeds for 3 and 9 min duration by air/O 2 plasma were showed the highest growth activity and dry matter accumulation. Total chlorophyll contents of the leaves, longest spikes and number of spikes/spikelet were also increased. The wheat yield was increased ~ 20% over control by 6 min treatment with air/O 2 plasma. Overall results revealed that LFGD plasmas can significantly change seed surface architecture, water absorption, germination rate, seedling growth and yield of wheat.  相似文献   

    12.
    The kinetics and mechanism of base hydrolysis of tris(3-(2-pyridyl)-5,6-bis(4-phenyl sulphonic acid)-1,2,4-triazine)iron(II), \({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\) have been studied in aqueous, sodium dodecyl sulphate (SDS) and cetyltrimethyl ammonium bromide (CTAB) media at 25, 35 and 45 °C under pseudo-first-order conditions, i.e. \(\left[ {\text{OH}^{ - } } \right]\) ? \({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\). The reaction is first order each in \({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\) and hydroxide ion. The rate increases with increasing ionic strength in aqueous and SDS media, whereas this parameter has little effect in CTAB. In SDS medium, the rate-determining step involves the reaction between \(\left[ {\text{OH}^{ - } } \right]\) and \({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\), whereas in CTAB medium, it involves reaction between a neutral ion pair, {\({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\)·4CTA+} and \(\left[ {\text{OH}^{ - } } \right]\) ions. The specific rate constants and thermodynamic parameters (E a, ΔH #, ΔS # and ΔG 35°C # ) have been evaluated in all three media. The near equal values of ΔG 35°C # obtained in aqueous and SDS media suggest that these reactions occur essentially by the same mechanism. Slightly lower ΔG 35°C # values in CTAB medium can be attributed to a higher concentration of reactants in the Stern layer. The reaction is inhibited in SDS medium but catalysed in CTAB. The former can be attributed to the anionic surfactant creating more repellent space between the reactants. Catalysis in CTAB medium is ascribed to electrophilic and hydrophilic interactions between hydroxide ion/substrate with the cationic Stern layer, resulting in increased local concentrations of both reactants.  相似文献   

    13.
    B-Nb2O5 was recrystallized from commercially available oxide, and XRD analyses indicated that it is stable in contact with solutions over the pH range 0 to 9, whereas solid polyniobates such as Na8Nb6O19?13H2O(s) appear to predominate at pH>9. Solubilities of the crystalline B-Nb2O5 were determined in five NaClO4 solutions (0.1≤I m /mol?kg?1≤1.0) over a wide pH range at (25.0±0.1)?°C and at 0.1 MPa. A limited number of measurements were also made at I m =6.0 mol?kg?1, whereas at I m =1.0 mol?kg?1 the full range of pH was also covered at (10, 50 and 70)?°C. The pH of these solutions was fixed using either HClO4 (pH≤4) or NaOH (pH≥10) and determined by mass balance, whereas the pH on the molality scale was measured in buffer mixtures of acetic acid?+?acetate (4≤pH≤6), Bis-Tris (pH≈7), Tris (pH≈8) and boric acid?+?borate (pH≈9). Treatment of the solubility results indicated the presence of four species, \(\mathrm{Nb(OH)}_{n}^{5-n}\) (where n=4–7), so that the molal solubility quotients were determined according to:
    $0\mathrm{.5Nb}_{2}\mathrm{O}_{5}\mathrm{(cr)+0}\mathrm{.5(2}n-5\mathrm{)H}_{2}\mathrm{O(l)}_{\leftarrow}^{\to}\mathrm{Nb(OH)}_{n}^{5-n}+(n-5)\mathrm{H}^{+}\quad (n=4\mbox{--}7)$
    and were fitted empirically as a function of ionic strength and temperature, including the appropriate Debye-Hückel term. A Specific Interaction Theory (SIT) approach was also attempted. The former approach yielded the following values of log?10 K sn (infinite dilution) at 25?°C: ?(7.4±0.2) for n=4; ?(9.1±0.1) for n=5; ?(14.1±0.3) for n=6; and ?(23.9±0.6) for n=7. Given the experimental uncertainties (2σ), it is interesting to note that the effect of ionic strength only exceeded the combined uncertainties significantly in the case of log?10 K s6 to I m =1.0 mol?kg?1, such that these values may be of use by defining their magnitudes in other media. Values of Δ f G o, Δ f H o, S o and \(C_{p}^{\mathrm{o}}\) (298.15 K, 0.1 MPa) for each hydrolysis product were calculated and tabulated.
      相似文献   

    14.
    Organoselenium compounds have already been reported to be good anticarcinogenic candidates. A new selenoquinazoline derivative, 2,4-bis(selenomethyl)quinazoline (compound 1), has been synthesized, spectroscopically characterized and its crystal structure has been studied. An intermolecular coupling between C2 and \( {\text{H}}_{5}^{\prime } \) in the Heteronuclear Multiple Bond Correlation (HMBC) experiment has been observed. Assuming that the head-to-tail overlap of parallel molecules (as identified by X-ray diffraction) remains in solution to give bimolecular entities, the π–π interaction enables heteronuclear coupling between the former atoms with a three-bond distance [C2···(π–π)···\( {\text{C}}_{5}^{\prime } \)\( {\text{H}}_{5}^{\prime } \)]. The crystal structure of compound 1 has been solved by X-ray diffraction. It crystallizes in triclinic system, space group P?1. Unit cell parameters are a = 7.4969(7) Å, b = 8.7008(8) Å, c = 10.1666(9) Å, α = 110.215(2)°, β = 90.354(2)°, γ = 115.017(1)°. Linear chains in crystals of compound 1 are generated by C–H···Se and Se···Se bonds between molecules. Furthermore, head-to-tail overlap of parallel molecules, in which π–π interactions can occur, is observed. Compound 1 exhibited a cytotoxic effect in all of the evaluated tumoral cell lines and showed a higher cytotoxic effect in colon and breast cancer cell lines than etoposide, which was used as a reference compound.  相似文献   

    15.
    In the present investigations, the excess molar volumes, \( V_{ijk}^{\text{E}} \), excess isentropic compressibilities, \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), and excess heat capacities, \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \), for ternary 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (i) + 1-butyl-3-methylimidazolium tetrafluoroborate (j) + 1-ethyl-3-methylimidazolium tetrafluoroborate (k) mixture at (293.15, 298.15, 303.15 and 308.15) K and excess molar enthalpies, \( \left( {H^{\text{E}} } \right)_{ijk} \), of the same mixture at 298.15 K have been determined over entire composition range of x i and x j . Satisfactorily corrections for the excess properties \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) have been obtained by fitting with the Redlich–Kister equation, and ternary adjustable parameters along with standard errors have also been estimated. The \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) data have been further analyzed in terms of Graph Theory that deals with the topology of the molecules. It has also been observed that Graph Theory describes well \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) values of the ternary mixture comprised of ionic liquids.  相似文献   

    16.
    The structure and conformational dynamics of the COCl–COF molecule in the ground and lowest excited electronic states were investigated theoretically by the CASPT2/cc-pVTZ method. The equilibrium geometric parameters, harmonic vibrational frequencies, potential functions of internal rotation, and adiabatic transition energies were obtained. According to the results of calculations, the molecule in the ground electronic state exist as the trans and gauche (dOCCO ~30–40°) conformers with a low potential barrier to gauchegauche transition therefore it is impossible to exclude existence of the cis conformer (instead of gauche) with a very broad and flat potential minimum. For all the investigated excited electronic states of oxalyl chloridefluoride molecule calculations predicted the trans and cis conformers. The strong coupling of internal rotation around the C–C bond and non-planar vibrations of carbonyl fragments was found for the excited electronic states. The results of calculation were utilized for reanalysis of experimental \( \tilde{A}^{1} A^{\prime \prime} \leftarrow \tilde{X}^{1} A^{\prime} \) and \( \tilde{a}^{3} A^{\prime \prime} \leftarrow \tilde{X}^{1} A^{\prime} \) vibronic spectra reported in Kidd and King (J Mol Spectrosc 50:209–219 (1974), and ibid. 48:592–599 (1973)). The vibrational assignment that does not contradict the vibrational spectroscopy data and results of calculations was obtained.  相似文献   

    17.
    Complexes \(\rm[{Ph_{3}PR]_2^+[RuCl_6]^{2-}}\), where R = C2H5 (I), CH=CHCH3 (II), CH2CH=CHCH3 (III), and CH2OCH3 (IV), have been prepared by the reaction between ruthenium(III) chloride hydrate and triphenylorganylphosphonium chlorides in dimethylsulfoxide in the presence of hydrochloric acid. A hydrochloric acid solution of ruthenium(III) chloride hydrate when mixed with an aqueous solution of 2-butylene-1,4- bis(triphenylphosphonium dichloride) followed by recrystallization from dimethylsulfoxide results in complex \(\rm[{Ph_{3}PCH_2CH=CHCH_2{PPh_3}]_2^{2+}[Ru_2Cl_{10}O]^{4-}}\)· 4H2O (V). According to X-ray diffraction data, phosphorus atoms in mono- and binuclear cations have slightly distorted tetrahedral coordination (CPC 105.54(13)°?113.00(8)°, P?C 1.758(9)?1.839(7) Å). In slightly distorted octahedral anions [RuCl6]2? of complexes I–IV, the Ru?Cl bond lengths vary in the range 2.3222(6)?2.340(2) Å; the cis-ClRuCl and trans-ClRuCl angles are 89.133(18)°–90.867(18)° and 179.53(13)°–180°, respectively. In the binuclear [(RuCl5)2O]4? anion of complex V, RuCl5 fragments are bonded by a bridging oxygen atom. The Ru–Cl bond lengths fall in the range 2.3375(8)?2.3957(8) Å; the Ru–O bond length is 1.7832(2) Å. The cis-ClRuCl, trans-ClRuCl, cis-ORuCl, and trans-ORuCl angles are 86.67(3)°?91.28(3)°, 174.60(3)°?174.83(3)°, 91.49(2)°?93.65(2)°, and 178.39(2)°, respectively. In crystals I–V, interionic hydrogen bonds Cl···Hcation (2.63?2.95 Å), Cl··· \({\rm{H}_{{H_2}O}}\) (2.35?2.79 Å), and Hcation···\({\rm{O}_{{H_2}O}}\) (1.72?1.93 Å) (for V) are found.  相似文献   

    18.
    Apparent molar volumes, apparent molar adiabatic compressibilities and viscosity B-coefficients for metformin hydrochloride in aqueous d-glucose solutions were determined from solution densities, sound velocities and viscosities measured at T = (298.15–318.15) K and at pressure p = 101 kPa as a function of the metformin hydrochloride concentrations. The standard partial molar volumes (\( \phi_{V}^{0} \)) and slopes (\( S_{V}^{*} \)) obtained from the Masson equation were interpreted in terms of solute–solvent and solute–solute interactions, respectively. Solution viscosities were analyzed using the Jones–Dole equation and the viscosity A and B coefficients discussed in terms of solute–solute and solute–solvent interactions, respectively. Adiabatic compressibility (\( \beta_{s} \)) and apparent molar adiabatic compressibility (\( \phi_{\kappa }^{{}} \)), limiting apparent molar adiabatic compressibility (\( \phi_{\kappa }^{0} \)) and experimental slopes (\( S_{\kappa }^{*} \)) were determined from sound velocity data. The standard volume of transfer (\( \Delta_{t} \phi_{V}^{0} \)), viscosity B-coefficients of transfer (\( \Delta_{t} B \)) and limiting apparent molar adiabatic compressibility of transfer (\( \Delta_{t} \phi_{\kappa }^{0} \)) of metformin hydrochloride from water to aqueous glucose solutions were derived to understand various interactions in the ternary solutions. The activation parameters of viscous flow for the studied solutions were calculated using transition state theory. Hepler’s coefficient \( (d\phi /dT)_{p} \) indicated the structure making ability of metformin hydrochloride in the ternary solutions.  相似文献   

    19.
    The thermochemistry of the reaction of the microsolvated Na+ such as [Na(H2O) n ; n?=?1?6]+, [Na(NH3) n ; n?=?1?6]+ and [Na(H2O) n (NH3) m ; n?+?m?=?2?6]+ with thymine (Thy), as an example of a reaction in the microcosmic environment, have been studied in this work, theoretically. It was found that the increase of the number of solvent molecules in the structure of microsolvated Na+ is accompanied by the decrease of the standard enthalpy (\(\Delta H_{r}^{^\circ }\)) and Gibbs free (\(\Delta G_{r}^{^\circ }\)) energies of the reaction (Thy?+?[Na(X) n ]+→Thy-Na(X) n + ; X?=?solvent molecule). Also, the calculations showed that the electronic intermolecular interaction (?Eint) between the Thy and microslovated Na+ decreased with the increase of solvent molecules. For the interaction of the [Na(H2O) n ; n?=?4, 5 and 6]+ ions with the Thy, there was the probability of forming of the hydrogen bond between water molecules in the structure of solvated Na+ and the Thy. The gas phase infrared (IR) spectra of the complexes of the microsolvated Na+ with the Thy for different values of n were calculated and compared with each other to follow the change in the frequency of the stretching vibration of the interaction path between the C=O group of the Thy and Na (O…Na) with n. Using the calculated values of \(\Delta G_{r}^{^\circ }\) of the reactions, the mole fractions of the complexes of microsolvated Na+ ions with the Thy were calculated at different humidity.  相似文献   

    20.
    A centrosymmetric mononuclear copper(II) complex, [Cu(L1)2] (I), and a phenolate oxygen-bridged dinuclear copper(II) complex, [Cu2(L2)4] (II) (HL1 = 4-chloro-2-[(2-morpholin-4-ylethylimino)methyl]phenol, HL2 = 4-chloro-2-(cyclohexylimino-methyl)phenol), were synthesized and characterized by elemental analyses, IR, and single crystal X-ray diffraction. The crystal of I is monoclinic: space group {ITP}21/n, a = 13.396(3), b = 5.339(1), c = 19.740(4) Å, β = 108.64(3), V = 1337.8(5) Å3, {ITZ} = 2. The crystal of II is monoclinic: space group P21, a = 9.157(2), b = 22.715(4), c = 12.169(2) Å, = 95.28(3), {ITV} = 2520.4(8) Å3, {ITZ}= 2. The Cu atom in I, lying on the inversion center, is four-coordinate in a square planar geometry with two phenolate oxygen and two imine nitrogen atoms. Each Cu atom in II is five-coordinate in a square pyramidal geometry with two phenolate oxygen and two imine nitrogen atoms from two L2 ligands defining the basal plane and with one phenolate oxygen atom of another L2 ligand occupying the apical position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号