首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Single crystals of diammonium tetranitratouranylate (NH4)2[UO2(NO3)4] (I) and a new diammonium tetranitratouranylate complex with 18-crown-6 [(NH4)(18C6)]2[UO2(NO3)4] (II) have been synthesized by the reaction of diaquadinitratouranyl tetrahydrate with ammonium nitrate in a nitric acid solution and the reaction of the same reagents with 18C6 in an ethanol solution, respectively. The X-ray diffraction analysis of compounds I and II has been performed. Crystals of compounds I and II are monoclinic, Z = 2, space group P21/n, a = 6.4075(5) ?, b = 7.7851(7) ?, c = 12.4461(12) ?, β = 101.239(1)°, V = 608. 94(9) ?3 for compound I and a = 10.542(9) ?, b = 8.590(8) ?, c = 22.5019(19) ?, β = 101.632(1)°, V = 2058.3(3) ?3 for compound II. The [UO2(NO3)4]2− complex anion in compounds I and II contains two monodentate and two bidentate cyclic nitrato groups, and the coordination number of uranyl is 6. The 18C6 molecule in the structure of compound II has the classic crown conformation and combined with the ammonium ion by three hydrogen bonds. Compounds I and II formed by electrostatic attraction forces between counterions are stabilized by (NH4+)NH...O(NO3) interionic hydrogen bonds.  相似文献   

2.
The crystal structure of (NH4)2Na[Rh(NO2)6] previously studied only from the data on polycrystals is refined. The selection of the Fm-3 space group is shown to be unambiguous. Geometrical characteristics of the complex [Rh(NO2)6]3s-anion are: Rh—N 2.051 ?, N-O 1.237 ?, ∠O-N-O 119.0°.  相似文献   

3.
The structure of the product formed on boiling [RuNO(NH3)3(NO2)(OH)]Cl·0.5H2O in 3 M HNO3 is determined by XRD. The crystals belong to monoclinic symmetry. Crystallographic data for H11ClN6O8Ru are: a = 13.7924(4) ?, b = 6.9114(2) ?, c = 12.3577(4) ?, β = 111.863(1)°, V = 1093.27(6) ?3, Z = 4, d calc = 2.185 g/cm3, space group Cc. The structure is built of complex [RuNO(NH3)3(H2O)Cl]2+ cations and NO3 anions. The compound is studied by IR spectroscopy and X-ray phase analysis. Original Russian Text Copyright ? 2009 by V. A. Emel’yanov, E. V. Kabin, and I. A. Baidina __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 3, pp. 598–601, May–June, 2009.  相似文献   

4.
At T = 150 K, the crystal structure of [Cu(NH3)4](ReO4)2 is studied: a = 6.5167(3) ?, b = 6.7790(3) ?, c = 7.4627(3) ?, α = 67.336(1)°, β = 80.004(1)°, γ = 70.687(1)°, V = 286.70(2) ?3, P-1 space group, Z = 1, d x = 3.661 g/cm3. We analyze the packing of ions using the translation sublattice isolation technique.  相似文献   

5.
Double complex salts (DCSs) [Co(NH3)6][Fe(CN)6] (I) and [Co(NH3)6]2[Cu(C2O4)2]3 (II) and complex [Co(NH3)6]2(C2O4)3·4H2O (III) are synthesized and investigated by single crystal XRD, crystal optics, and elemental analysis. The crystalline phases of I, II, and III (R-3, P21/c, and Pnnm space groups respectively) have the following crystallographic characteristics: a = 10.9804(2) ?, b = 10.9804(2) ?, c = 10.8224(3) ?, V = 1130.03(4) ?3, Z = 3, d x = 1.65 g/cm3 (I); a = 9.6370(2) ?, b = 10.2452(2) ?, c = 13.2108(3) ?, V = 1932.90(9) ?3, Z = 2, d x= 1.97 g/cm3 (II), and a = 11.7658(3) ?, b = 11.7254(3) ?, c = 14.1913(4) ?, V = 1304.34(5) ?3, Z = 2, d x = 1.68 g/cm3 (III). This paper investigates the products of DCS thermolysis in a hydrogen atmosphere: the intermetallic compound CoFe with the bcc parameter a = 2.852 ? for I and a heterogeneous mixture of Co and Cu in the decomposition of II. The coordinated CN and C2O42− groups then turn into NH3, hydrocarbons, and CO2. The dominant hydrocarbon is methane.  相似文献   

6.
Single crystals of (CN3H6)2[(UO2)2(C2O4)(SeO3)2] were synthesized and studied by IR spectroscopy and X-ray diffraction. The compound crystallizes in the triclinic system with the unit cell parameters a = 7.1169(12) ?, b = 7.4874(10) ?, c = 8.9748(14) ?, α = 88.243(6)°, β = 74.546(6)°, γ = 81.445(6)°, space group P[`1]P\bar 1, Z = 1, R = 0.0304. The main structural units of the crystals are layers of the [(UO2)2(C2O4)(SeO3)2]2− composition; the layers belong to the crystal chemical group A 2 K 02 T 23 (A = UO22+ K 02 = C2O42−, T 3 = SeO3) of uranyl complexes. Uranium-containing complex groups are linked by electrostatic interactions and a network of hydrogen bonds with CN3H6+ guanidinium ions to form a three-dimensional framework.  相似文献   

7.
1-Allyl-4-aminopyridinium chloride reacts with Cu(NO3)2 · 3H2O in an ethanolic solution under the conditions of ac electrochemical synthesis at copper electrodes to form crystals of compound [(NH2C5H4N(C3H5))2Cu3Cl3(NO3)2] (I). The crystals of compound I are monoclinic: space group P21/c, Z = 4, a = 25.770(7), b = 7.230(4), c = 12.505(5) ?, β = 92.58(3)°, V = 2328(2) ?3. The direct interaction of 1-allylquinolinium nitrate with Cu(NO3)2 · 3H2O in a methanolic solution in the presence of metallic copper yields crystals of compound [C9H7N(C3H5)Cu(NO3)2] (II). The crystals of compound II are triclinic: space group P , a = 6.756(3), b = 8.391(4), c = 12.489(5) ?, α = 77.18(3)°, β = 89.48(4)°, γ = 73.32(3)°, V = 662.0(5) ?3. The structure of compound I is built of infinite linear anions: polymeric fragments {(NH2C5H4N(C3H5))2Cu3Cl3(NO3)2} n . Each of two copper atoms (Cu(1) and Cu(2)) π-coordinates the C=C bonds of the allyl groups of the 1-allyl-4-aminopyridinium cations, the oxygen atom of the nitrate ions, and two chlorine atoms. The third copper atom Cu(3) is linearly linked with two chlorine atoms. Particular polymeric fragments are additionally joined by the N-H…O, C-H…O, C-H…Cl hydrogen bonds. The crystal structure of compound II is built-up of the isolated L2Cu2(NO3)4 fragments (L is the 1-allylquinolinium cation). The metal atom is localized in the trigonal pyramidal coordination environment of three oxygen atoms of the nitrate ions and of the C=C bond of the allyl group of the cation. The particular L2Cu2(NO3)4 fragments are additionally joined by the C-H…O hydrogen bonds. Original Russian Text ? A.V. Pavlyuk, T. Lis, M.G. Mys’kiv, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 458–462.  相似文献   

8.
The [Ni(DDM)2(NO3)2(H2O)2] complex (DDM is 4,4-diaminodiphenylmethane [CH2(C6H4NH2)2]) is synthesized, and its structure is determined. The crystals are triclinic, space group P , a = 5.846(1) ?, b = 9.450(2) ?, c = 13.390(3) ?, α = 105.63(3)°, β = 98.13(3)°, γ = 105.84(3)°, V = 666.6(2) ?3, ρcalcd = 1.553 g/cm3, Z = 2. The Ni(II) ion (in the inversion center) is bound to a distorted octahedral array formed by the nitrogen atoms of the primary amino groups of the DDM molecules and the oxygen atoms of the monodentate nitrato groups and water molecules (Ni(1)-N(3) 2.119(2) ?, Ni(1)-O(1) 2.122(2) ?, Ni(1)-O(w) 2.047(2) ?, angles at the Ni atoms vary in the 85.08(9)°–94.92(9)° interval). The structure contains supramolecular metallacycles formed by the O(w)-H…N(2) hydrogen bonds between the coordinated H2O molecules and the terminal amino groups of DDM. The metallacycles are joined by the Ni2+ ions into infinite chains running in the [111] direction. Original Russian Text ? Yu.V. Kokunov, V.V. Kovalev, Yu.E. Gorbunova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 11, pp. 1838–1843.  相似文献   

9.
A single crystal X-ray diffraction study is carried out for [Pd(P(i-Pr)3)2(acac)]BF4, T = 150(2) K. Crystal data: a = 10.2935(4) ?, b = 11.3591(5) ?, c = 13.8728(6) ?, α = 89.154(2)°, β = 68.448(1)°, γ = 85.032(1)°, P-1 space group, V = 1502.75(11) ?3, Z = 2, d x = 1.354 g/cm3.  相似文献   

10.
The isostructurality of [Rh(NH3)5Cl](WO4) x (MoO4)1s-x (x = 0, 0.5, 1) complex salts is shown, and their thermal properties are compared. In a hydrogen atmosphere, transformations begin at T ∼ 200°C. According to the powder XRD data, the phase composition of the end products is markedly different. For the Rh—Mo system, the dependence (V/Z) of the atomic volume on the composition is presented. The thermal decomposition product [Rh(NH3)5Cl](MoO4) (T fin = 800°C) is shown to be the disordered Mo0.5Rh0.5 solid solution (a = 2.757(2) ?, c = 4.428(4) ?, P63/mmc space group).  相似文献   

11.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

12.
Acid ammonium metaphenyleneamine dodecatungstenphosphate of the composition (C6H4(NH2)(NH3))2H[PW12O40] · 8H2O is synthesized and studied by mass spectrometry, X-ray diffraction, IR spectroscopy, and thermogravimetry. The crystals are rhombic, space group Pnma, a = 18.421(2), b = 19.569(3), c = 13.443(3) ?, Z = 4, ρ(calc) = 4.431 g/cm3, V = 4845.9(2) ?3. Original Russian Text ? S. Holguin Quinones, G.Z. Kaziev, A. de Ita, A.M. Koroteev, V.E. Zavodnik, O.A. Kutanova, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 9, pp. 660–664.  相似文献   

13.
The complex [Ag(DDM)2(CH3C6H4NH2)]NO3, where DDM is 4,4-diaminodiphenylmethane [CH2(C6H4NH2)2], was synthesized and its structure was determined. The crystals are monoclinic, space group P21/n, a = 9.543(2) ?, b = 18.056(4) ?, c = 1.901(2) ?, β = 106.94(3)°, V = 1796.8(6) ?3, ρcalcd = 1.443 g/cm3, Z = 4. The Ag atom (at the inversion center) is coordinated at the vertices of an almost undistorted octahedron by six nitrogen atoms of the primary amino groups from four bridging DDM molecules and two terminal p-toluidine molecules (Ag-N, 2.546(3) ?; NAgN, 89.7–90.3°). Wavelike layers composed of conjugate multiunit metal rings, each containing four Ag+ ions and four bridging DDM ligands, are formed in the structure in the [101] direction (a 2D polymer). Uncoordinated NO 3 anions are arranged in the cavities between the layers and link them by N-H⋯O hydrogen bonds. Original Russian Text ? Yu.V. Kokunov, V.V. Kovalev, Yu.E. Gorbunova, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 12, pp. 1992–1998.  相似文献   

14.
A new binuclear cadmium(II) complex with neutral ligands, 1,2-diaminobenzene (DMB) and dimethylformamide (DMF), [Cd2(Ph(NH2)2)5(DMFA)4](B10H10)2, was synthesized and studied by IR spectroscopy and X-ray diffraction. The crystals are monoclinic, a = 26.198(3) ?, b = 12.742(3) ?, c = 21.658(3) ?, β = 119.985(10)°, Z = 8, space group C2/c. The distorted octahedral environment of Cd is formed by four nitrogen atoms of three DAB molecules and two oxygen atoms of DMF molecules. Three independent DAB molecules perform different functions: one chelates the Cd atom, another is linked to cadmium as a monodentate ligand, and the third one bridges two Cd atoms, thus forming the dimer. The amino groups of the DAB molecules are involved in the N-H⋯O and N-H⋯N hydrogen bonds and in N-H⋯B and N-H⋯H-B specific interactions with the cluster boron anion. Original Russian Text ? E.A. Malinina, V.V. Drozdova, L.V. Goeva, I.N. Polyakova, N.T. Kuznetsov, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 6, pp. 922–926.  相似文献   

15.
Summary. 2 [Yb2(NH2)2(Pz)4][Yb(NH3)2(Pz)3 PzH], Pz = pyrazolate anion, PzH = pyrazole, C3H4N2 is obtained by the reaction of ytterbium metal with pyrazole in liquid ammonia and subsequent increase of the temperature to 200°C resulting in the formation of colorless single crystals of the compound. The X-ray single crystal analysis reveals that the structure consists of 2 [Yb2(NH2)2(Pz)4] planes with neutral [Yb(NH3)2(Pz)3 PzH] monomeric molecules that are located between the planes and ytterbium is trivalent. This is the first example of a two-dimensional network structure of an organic amine of the rare earth elements that derives from an electride induced synthesis. The product decomposes under release of ammonia outside its sealed reaction vessel, viz. if the NH3 pressure is removed.  相似文献   

16.
Single crystals of (H3O)[UO2(CH3COO)3] (I) and (NH(C2H5)3)[UO2(CH3COO)3] (II) are synthesized, and their structures are studied by X-ray crystallography. Compound I crystallizes in the tetragonal crystal system with the unit cell parameters a = 13.70640(10) ?, c = 27.5258(5) ?, V = 5171.14(11) ?3, space group I41/a, Z = 16, R = 0.0238. The crystals of compound II are orthorhombic with the parameters a = 13.3685(3) ?, b = 10.6990(3) ?, c = 12.2616(3) ?, V = 1753.77(8) ?3, space group Pna21, Z = 4, R = 0.0228. The uranium-containing structural units of crystals I and II are [UO2(CH3COO)3] island mononuclear groups belonging to the A B301(A = UO22+, B01 = CH3COO) crystal-chemical group of uranyl complexes. [UO2(CH3COO)3] complexes are linked into a three-dimensional framework by electrostatic interactions with the outer-sphere cations and by hydrogen bonds involving the hydrogen atoms of hydroxonium (I) or triethylammonium (II) with the oxygen atoms of the acetato groups.  相似文献   

17.
2 [Yb2(NH2)2(Pz)4][Yb(NH3)2(Pz)3 PzH], Pz = pyrazolate anion, PzH = pyrazole, C3H4N2 is obtained by the reaction of ytterbium metal with pyrazole in liquid ammonia and subsequent increase of the temperature to 200°C resulting in the formation of colorless single crystals of the compound. The X-ray single crystal analysis reveals that the structure consists of 2 [Yb2(NH2)2(Pz)4] planes with neutral [Yb(NH3)2(Pz)3 PzH] monomeric molecules that are located between the planes and ytterbium is trivalent. This is the first example of a two-dimensional network structure of an organic amine of the rare earth elements that derives from an electride induced synthesis. The product decomposes under release of ammonia outside its sealed reaction vessel, viz. if the NH3 pressure is removed.  相似文献   

18.
The complex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) was prepared from [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 and CO or from 1 and NH4PF6 in presence of an excess of methanol. With an excess of CO, the dicarbonyl and tricarbonyl compounds trans-[Rh(CO)2(PiPr3)2]PF6 (3) and [Rh(CO)3(PiPr3)2]PF6 (4) were obtained. Displacement of one CO ligand in 3 by pyridine and acetone led to the formation of trans-[Rh(CO)(py)PiPr3)2]PF6 (5a) and trans-[Rh(CO) (O=CMe2(PiPr3)2]PF6 (6), respectively. Treatment of 1 with [pyH]BF4 and pyridine gave trans-[Rh(py)2(PiPr3)2]BF4 (7); in presence of H2 the dihydrido complex [RhH2(py)2(PiPr3)2]BF4 (8) was formed. The reaction of 1 with NH4PF6 and ethylene produced trans [Rh(C2H4(NH3(PiPr3)2]PF6(9) whereas with methylvinylketone and acetophenone the octahedral hydridorhodium(III) complexes [RhH(η2-CH=CHC(=O)CH3 (NH3(PiPr3)2]PF6(11) and [RhH(η2-C6H4C(=O)CH3(NH3(Pipr3)2]PF6 (13) were obtained. The synthesis of the cationic vinylidenerhodium(I) compounds trans-[Rh(=C=CHR)(py)(PiPr3)2]BF4 (14–16) and trans-[Rh(=C=CHR)(NH3)(PiPr3) 2]PF6 (17–19) was achieved either on treatment of 1 with [pyH]BF4 or NH4PF6 in presence of 1-alkynes or by ethylene displacement from 9 by HCCR. With tert-butylacetylene as substrate, the alkinyl(hydrido)rhodium(III) complex [RhH(CCtBu)(NH3)(O=CMe2)(PiPr3) 2]PF6 (20) was isolated which in CH2Cl2 solution smoothly reacted to give 19 (R =tBu). The cationic but-2-yne compound trans-[Rh(MeCCMe)(NH3)(Pi Pr3)2]PF6 (21) was prepared from 1, NH4PF6 and C2Me2. The molecular structures of 3 and 14 were determined by X-ray crystallography; in both cases the square-planar coordination around the metal and the trans disposition of the phosphine ligands was confirmed.

Abstract

Der Komplex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) wurde aus [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 und CO oder aus 1, NH4PF6 und Methanol hergestellt. In Gegenwart von überschüssigem CO wurden die Dicarbonyl- und Tricarbonyl-Verbindungen trans-[Rh(CO)2(PiPr3)2]PF6 (3) und [Rh(CO)3(PiPr3)2]PF6 (4) erhalten. Die Verdrängung eines CO-Liganden in 3 durch Pyridin oder Aceton führte zur Bildung von trans-[Rh(CO)(py)(PiPr3)2]PF6 (5a) bzw. trans-[Rh(CO)(O=CMe2)(PiPr3)2]PF6 (6). Bei Einwirkung von [pyH]BF4 und Pyridin auf 1 entstand trans-[Rh(py)2(PiPr3)2]BF4 (7); in Gegenwart von H2 bildete sich der Dihydrido-Komplex [RhH2(py)2(PiPr3) 2]BF4 (8). Die Reaktion von 1 mit NH4PF6 und Ethen lieferte trans-[Rh(C2H4)(NH3)(PiPr3)2] PF6 (9) während mit Methylvinylketon und Acetophenon die oktaedrischen Hydridorhodium(III)-Komplexe [RhH(η2-CH=CHC(=O)CH3 (NH3)-(PiPr3)2]PF6 (11) und [RhH(η-2-C6H4C(=O)CH3(NH3)(PiPr3)2)2]PF6 (13) erhalten wurden. Die Synthese der kationischen Vinyli-denrhodium(I)-Verbindungen trans-[Rh(=C=CHR(py)(PiPr3)2]BF4 (14–16) und trans-[Rh(=C=CHR)(NH3)(PiPr3)2]PF6 (17–19) gelang durch Einwirkung von [pyH]BF4 bzw. NH4PF6 auf 1 in Gegenwart von 1-Alkinen oder durch Ethen-Verdrängung aus 9 mit HCCR. Mit tert-Butylacetylen als Reaktionspartner wurde der Alkinyl(hydrido)rhodium(III)-Komplex [RhH(CCtBu)(NH3(O=CMe2)(PiPr3)2]PF6 (20) isoliert, der in CH2Cl2-Lösung sofort zu 19 (R =tBu) reagiert. Die kationische 2-Butin-Verbindung trans -[Rh(MeCCMe)(NH3)PiPr3)2]PF6 (21) wurde aus 1, NH4PF6 und C2Me2 hergestellt. Die Strukturen von 3 und 14 wurden kristallographisch bestimmt; in beiden Fa len ließ sich die quadratisch-planare Koordination des Metalls und die trans-Anordnung der Phosphanliganden bestätigen.  相似文献   

19.
A re-interpretation and re-evaluation of single-crystal X-ray diffraction data of a previously reported ‘(NH4)2(NH3)[Ni(NH3)2Cl4]’ (J. Solid State Chem. 162 (2001) 254) give a new formula (NH4)2−2z[Ni(NH3)2]z[Ni(NH3)2Cl4] with z=0.152. This new formula results from defects in an idealized ‘(NH4)2[Ni(NH3)2Cl4]’ basic structure, where two adjacent NH4+ cations are replaced by one Ni(NH3)22+ unit. Cl anions from the basic structure complete the coordination sphere of the new Ni2+ to [Ni(NH3)2Cl4]2−.  相似文献   

20.
At T = 150 K the crystal structure of [Cu(en)2] (ReO4)2 (en is ethylenediamine) is studied: a = 6.6229(1) ?, b = 14.2968(3) ?, c = 7.4859(2) ?, β = 102.415(1)°, V = 692.24(3) ?,3, P21/c space group, Z = 2, d x = 3.282 g/cm3. Packing of complex cations is shown to be single layered and pseudohexagonal. Perrhenate anions are located between these layers and additionally coordinate copper atoms with Cu...O distances being 2.504(3) ?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号