首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dyugaev  A. M.  Grigoriev  P. D. 《JETP Letters》2020,112(2):101-105

A solution of the Schrödinger equation for the ground state of a particle in a potential field is analyzed. Since the wavefunctions of the ground state are nodeless, potentials of various kinds can be unambiguously determined. It turns out that the ground state corresponds to zero energy for a wide class of model potentials. Moreover, the zero level can be a single one at the boundary of the continuous spectrum. Crater-like potentials monotonically dependent on coordinates in one-, two-, and three-dimensional cases are studied. Instanton-type potentials with two local minima are of interest in the one-dimensional case. For the Coulomb potential, the energy of the ground state is stable with respect to both long- and short-range screening of this potential. Two-soliton solutions of the nonlinear Schrödinger equation are found. It is demonstrated that the proposed version of the inverse scattering transform is efficient in the analysis of solutions of differential equations.

  相似文献   

2.
The variety of bi-confluent Heun potentials for a stationary relativistic wave equation for a spinless particle is presented. The physical potentials and energy spectrum of this wave equation are related to those for a corresponding Schrödinger equation in the sense that all the potentials derived for the latter equation are also applicable for the wave equation under consideration. We show that in contrast to the Schrödinger equation the characteristic spatial length of the potential imposes a restriction on the energy spectrum that directly reflects the uncertainty principle. Studying the inversesquare- root bi-confluent Heun potential, it is shown that the uncertainty principle limits, from below, the principal quantum number for the bound states, i.e., physically feasible states have an infimum cut so that the ground state adopts a higher quantum number as compared to the Schrödinger case.  相似文献   

3.
We justify the use of the lattice equation (the discrete nonlinear Schrödinger equation) for the tight-binding approximation of stationary localized solutions in the context of a continuous nonlinear elliptic problem with a periodic potential. We rely on properties of the Floquet band-gap spectrum and the Fourier–Bloch decomposition for a linear Schrödinger operator with a periodic potential. Solutions of the nonlinear elliptic problem are represented in terms of Wannier functions and the problem is reduced, using elliptic theory, to a set of nonlinear algebraic equations solvable with the Implicit Function Theorem. Our analysis is developed for a class of piecewise-constant periodic potentials with disjoint spectral bands, which reduce, in a singular limit, to a periodic sequence of infinite walls of a non-zero width. The discrete nonlinear Schrödinger equation is applied to classify localized solutions of the Gross–Pitaevskii equation with a periodic potential.  相似文献   

4.
A formal but not conventional equivalence between stochastic processes in nonequilibrium statistical thermodynamics and Schrödinger dynamics in quantum mechanics is shown. It is found, for each stochastic process described by a stochastic differential equation of Itô type, there exists a Schrödinger-like dynamics in which the absolute square of a wavefunction gives us the same probability distribution as the original stochastic process. In utilizing this equivalence between them, that is, rewriting the stochastic differential equation by an equivalent Schrödinger equation, it is possible to obtain the notion of deterministic limit of the stochastic process as a semi-classical limit of the “Schrödinger” equation. The deterministic limit thus obtained improves the conventional deterministic approximation in the sense of Onsager-Machlup. The present approach is valid for a general class of stochastic equations where local drifts and diffusion coefficients depend on the position. Two concrete examples are given. It should be noticed that the approach in the present form has nothing to do with the conventional one where only a formal similarity between the Fokker-Planck equation and the Schrödinger equation is considered.  相似文献   

5.
The linearized collective Schrödinger equation for nuclear quadrupole surface vibrations incorporates a new spin degree of freedom with a spin value of 3/2. We use this equation to describe the low energy spectrum of certain even-odd Ir nuclei which have a spin 3/2 in their ground state. For that purpose we explicitly introduce collective spin-dependent potentials which simulate the interaction of the valence nucleon with the core. The linearized Schrödinger equation is transformed into an effective Schrödinger equation with collective spin-dependent potentials. Already collective spin-orbit couplings of SO(3) and SO(5) type are sufficient to reproduce the lowest excited states of even-odd Ir nuclei.  相似文献   

6.
《中国物理 B》2021,30(10):104206-104206
The soliton solution and collapse arrest are investigated in the one-dimensional space-fractional Schr?dinger equation with Kerr nonlinearity and optical lattice. The approximate analytical soliton solutions are obtained based on the variational approach, which provides reasonable accuracy. Linear-stability analysis shows that all the solitons are linearly stable. No collapses are found when the Lévy index 1 α≤ 2. For α = 1, the collapse is arrested by the lattice potential when the amplitude of perturbations is small enough. It is numerically proved that the energy criterion of collapse suppression in the two-dimensional traditional Schr?dinger equation still holds in the one-dimensional fractional Schr?dinger equation. The physical mechanism for collapse prohibition is also given.  相似文献   

7.
8.
Kudryavtsev  A. G. 《JETP Letters》2020,111(2):126-128
JETP Letters - The time-independent axially symmetric Schrödinger equation has been considered. Examples of two-dimensional potentials and exact solutions of the Schrödinger equation have...  相似文献   

9.
Two results on the Schrödinger equation for a particle on the surface of a torus are obtained: In the first part of this note closed-form zero-energy solutions for a free particle are given. In the second part we show for which potentials depending only on the polar angle the Schrodinger equation becomes exactly solvable.  相似文献   

10.
11.
12.
The multi-symplectic approach to the Schrödinger equation with a potential V = V(t,xk) is given. The condition for a vector field X in the multi-symplectic space to be a symmetry field is found. For a spherically symmetrical potential all such symmetry fields are effectively found.The one-to-one correspondence between solutions of the free Schrödinger equation and solutions of the oscillator problem is given. This enables us to give a new geometric interpretation of the non-typical, given by A.O. Barut, symmetry of the Schrödinger equation.  相似文献   

13.
Based on a new method of the numerical construction of the three-body Schrödinger operator continuous spectrum eigenfunctions an analysis of the solutions of the problem of three identical particles on the axis with quickly decreasing repulsive pair potentials is offered. The initial problem is reduced to solving an inhomogeneous boundary problem for an elliptical partial differential equation in a twodimensional domain as a circle with radiation boundary conditions, with a ray approximation of the solution with diffraction corrections, contributing to a smoothness of a solution sought, being used. The approach offered allows a natural generalization for a case of slowly decreasing potentials of the Coulomb type and higher configuration space dimensions.  相似文献   

14.
In this paper we consider a one-dimensional non-linear Schrödinger equation with a periodic potential. In the semiclassical limit we prove the existence of stationary solutions by means of the reduction of the non-linear Schrödinger equation to a discrete non-linear Schrödinger equation. In particular, in the limit of large nonlinearity strength the stationary solutions turn out to be localized on a single lattice site of the periodic potential. A connection of these results with the Mott insulator phase for Bose–Einstein condensates in a one-dimensional periodic lattice is also discussed.  相似文献   

15.
Abstract

We study symmetry properties of the heat equation with convection term (the equation of convection diffusion) and the Schrödinger equation with convection term. We also investigate the symmetry of systems of these equations with additional conditions for potentials. The obtained results are applied to construction of exact solutions of the system of the Schrödinger equation with convection term and the Euler equations for potentials.  相似文献   

16.
This paper presents a fractional Schrödinger equation and its solution. The fractional Schrödinger equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives to obtain the fractional Euler-Lagrange equations of motion. We present the Lagrangian for the fractional Schrödinger equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Schrödinger equation which is the same as that obtained using the fractional variational principle. As an example, we consider the eigensolutions of a particle in an infinite potential well. The solutions are obtained in terms of the sines of the Mittag-Leffler function.  相似文献   

17.
Effective mass Schrödinger equation is solved exactly for a given potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function. The effective mass Schrödinger equation is also solved for the Morse potential transforming to the constant mass Schrödinger equation for a potential. One can also get solution of the effective mass Schrödinger equation starting from the constant mass Schrödinger equation.  相似文献   

18.
《Physics letters. A》2020,384(36):126913
A new approach to find exact solutions to one–dimensional quantum mechanical systems is devised. The scheme is based on the introduction of a potential function for the wavefunction, and the equation it satisfies. We recover known solutions as well as to get new ones for both free and interacting particles with wavefunctions having vanishing and non–vanishing Bohm potentials. For most of the potentials, no solutions to the Schrödinger equation produce a vanishing Bohm potential. A (large but) restricted family of potentials allows the existence of particular solutions for which the Bohm potential vanishes. This family of potentials is determined, and several examples are presented. It is shown that some quantum, such as accelerated Airy wavefunctions, are due to the presence of non–vanishing Bohm potentials. New examples of this kind are found and discussed.  相似文献   

19.
In this research, we apply two different techniques on nonlinear complex fractional nonlinear Schrödinger equation which is a very important model in fractional quantum mechanics. Nonlinear Schrödinger equation is one of the basic models in fibre optics and many other branches of science. We use the conformable fractional derivative to transfer the nonlinear real integer-order nonlinear Schrödinger equation to nonlinear complex fractional nonlinear Schrödinger equation. We apply new auxiliary equation method and novel \(\left( {G'}/{G}\right) \)-expansion method on nonlinear complex fractional Schrödinger equation to obtain new optical forms of solitary travelling wave solutions. We find many new optical solitary travelling wave solutions for this model. These solutions are obtained precisely and efficiency of the method can be demonstrated.  相似文献   

20.
The asymptotic iteration method is used to find exact and approximate solutions of Schrödinger’s equation for a number of one-dimensional trigonometric potentials (sine-squared, double-cosine, tangent-squared, and complex cotangent). Analytic and approximate solutions are obtained by first using a coordinate transformation to reduce the Schrödinger equation to a second-order differential equation with an appropriate form. The asymptotic iteration method is also employed indirectly to obtain the terms in perturbation expansions, both for the energies and for the corresponding eigenfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号