首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The intensity dependence of the rose bengal (RB)-photosensitized inhibition of red blood cell acetylcholinesterase has been studied experimentally and the results compared to a quantitative excitation/deactivation model of RB photochemistry. Red blood cell membrane suspensions containing 5 μ M RB were irradiated with 532 nm, 8 ns laser pulses with energies between 1 and 98.5 mJ. A constant dose (7 J) was delivered to all samples by varying the total number of pulses. At incident energies greater than ∼ 4.5 mJ/pulse, the efficiency for photosensitized enzyme inhibition decreased as the energy/pulse increased. The generation of RB triplet state was monitored as a function of laser energy and the triplet-triplet absorption coefficient was determined to be 1.9 × 104 M −1 cm−1 at 530 nm. The number of singlet oxygen molecules produced at each intensity was calculated from both the physico-mathematical model and from laser flash photolysis results. The results indicated that the photosensitized inhibition of acetylcholinesterase was exclusively mediated by singlet oxygen, even at the highest laser intensities employed.  相似文献   

2.
Photodynamic therapy (PDT) is FDA-approved for use in patients with Barrett's esophagus using porfimer sodium (2 mg per kg) and a recommended light dose of 130 J cm−1 for high grade dysplasia. Despite uniform drug and light doses, the clinical outcome of PDT is variable. A significant number of PDT cases result in esophageal strictures, a side effect related to excessive energy absorption. The purpose of this project was to model esophageal stricture formation with a Monte Carlo simulation. An original multilayer Monte Carlo computer simulation was developed for esophageal PDT. Optical absorption and scattering coefficients were derived for mucosal and muscle layers of normal porcine esophagus. Porfimer sodium was added to each layer by increasing the absorption coefficient by the appropriate amount. A threshold-absorbed light dose was assumed to be required for stricture formation and ablation. The simulation predicted irreversible damage to the mucosa with a 160 J cm−1 light dose and damage to the muscle layer with an additional 160 J cm−1 light dose for a tissue porfimer sodium content of 3.5 mg kg−1. The simulation accurately modeled photodynamic stricture formation in normal pig in vivo esophageal tissue. This preliminary work suggests that the absorbed light threshold for stricture formation may be between 2 and 4 J per gram of tissue.  相似文献   

3.
Abstract— The fractional photoinhibition of the mechanically stimulable bioluminescence in the vacuolar dinoflagellate Dissodinium lunula is proportional to the logarithm of the exposure. The action spectrum for this photoinhibition has been determined by measuring threshold exposures in absolute units of photons cm−2. The threshold exposure at the wavelength of maximum sensitivity, 450 nm, was 2 ± 10−2 photons cm−2. The action spectrum is consistent with absorption by a blue light receptor pigment shielded by a nonphotoactive pigment which absorbs in the region of the bioluminescence emission spectrum. It is suggested that there may be some selective advantage for this absorbing pigment in the vacuolar dinoflagellates in order to prevent the organisms from being photoinhibited by their own bioluminescence.  相似文献   

4.
Abstract The use of sodium pentobarbital anesthesia 50 jig gm−1 during localized photodynamic therapy (PDT) was examined in C57BL/6 mice transplanted with the pigmented B-16 melanoma. A 10 mg kg−1 i.p. injection of Photofrin II was administered 24 h prior to light exposure (630 nm, 150 mW, cm−2, 300-500 J cm−2). Separate groups of mice were utilized to monitor tumour temperature and PDT tumor response. Core tumor temperatures decreased by approx. 10oC following sodium pentobarbital administration. Tumor responses were determined by documenting the percentage of treated animals without tumor recurrences for a period of 50 days following PDT. Superior PDT induced tumor responses were obtained in control (non-anesthetized) mice following light doses of 400 and 500 J cm−2. The results of this study indicate that sodium pentobarbital can induce a protective effect on B-16 melanomas treated with PDT.  相似文献   

5.
Abstract A photobiological study was camed out on the bacterium Escherichia coli in order to determine whether stimulation of growth occurred after irradiation of an inoculum with coherent red light. No enhancement or inhibition of growth was observed for cultures of the bacterium following irradiation of inocula with a Helium-neon laser (continuous wave, λ= 632.8 nm) at irradiances of 7.7 × 1015 and 1.8 × 1016 photons cm−2 s−1 using fluences of 4.5 × 10−-1 and 4.5 J cm−2 at each irradiance. Bacterial growth in irradiated and control cultures was monitored during a growth period of ca 2 h using a viable count technique after inocula in the early exponential phase had been diluted with fresh growth medium. These results do not provide support for the work of Kam et al . (1983, Nuov. Cim . 2D, 1138–1144), and Tiphlova and Karu (1988, Photochem. Photobiol . 48 , 467–471), which appear to show substantial enhancement of E. coli growth under these conditions.  相似文献   

6.
Abstract— The photoreaction cycle of 13- cis -bacteriorhodopsin (13- cis -bR) was investigated by low temperature spectrophotometry using two different preparations; 13- cis -bR constituted from bacterioopsin and 13- cis -retinal, and dark-adapted bacteriorhodopsin (bRD), which is an equi-molar mixture of 13- cis -bR and trans -bR.
By irradiation with 500 nm light at — 190°C, 13- cis -bR was converted to its batho-product, batho-13- cis -bR (batho-bR13), which is different from batho-product from trans -bR, batho-bRt. On warming batho-bR13 to -5°C in the dark, it completely changed to trans -bR. We estimated the composition of 13- cis -bR and trans -bR in the warmed sample spectrophotometrically and then the absorption spectrum of batho-bR13 was calculated. The absorption maximum lies at 608 nm, 1250 cm−1 longer than that of 13- cis -bR; the molar extinction coefficient (ε) is about 74000 M −1 cm−1, larger than that of 13- cis -bR (52000 M −1 cm−1).
On the warming the sample containing batho-bR13 formed by irradiating 13- cis -bR or bRD at — 190°C, we could not detect other intermediates such as the lumi- or meta-intermediates seen in trans-bR system.  相似文献   

7.
The possibility of extending photodynamic therapy to the treatment of highly pigmented neoplastic lesions was tested by using Si(IV)-naphthalocyanine (SiNc) as a tumor-localizing agent. Si(IV)-naphthalocyanine displays intense absorbance at 776 nm (ɛ= 5 × 105 M−1 cm−1), where melanin absorption becomes weaker. As an experimental model we selected B16 pigmented melanoma subcutaneously transplanted to C57BL mice. Upon injection of 0.5 or 1 mg kg−1 of liposome-incorporated SiNc, maximal accumulation of the photosensitizer in the tumor was observed at 24 h with recoveries of 0.35 and 0.57 μg g−1, respectively. However, the tumor targeting by SiNc shows essentially no selectivity, since the photosensitizer concentrations in the skin (peritumoral tissue) were very similar to those found in the tumor at all postinjection times examined by us. Irradiation of SiNc-loaded melanoma with 776 nm light from a diode laser at 24 h postinjection induces tumor necrosis and delay of tumor growth. The effect appears to be of purely photochemical nature at dose rates up to 260 mW cm−2; at higher dose rates, thermal effects are likely to become important.  相似文献   

8.
Abstract— The fluorescence decay profiles, relative quantum yield, and transmission of the phycoerythrin a subunit, isolated from the photosynthetic antenna system of Nostoc sp., were measured using single picosecond laser excitation. The fluorescence decay profiles were found to be intensity independent for the intensity range investigated (4 × 1013 and 4 × 1015 photons-cm-2 per pulse). The decay profiles were fitted to a model assuming both chromophores absorb and fluoresce. The inferred total deactivation rates for the two chromophores, in the absence of energy transfer and when the effects of the response time of the streak camera and the finite pulse width are properly included, are 1.0 × 1010s' and 1.0 × 109 s 1 for the s and f chromophores. respectively, whereas the transfer rate between the two fluorophorcs is estimated to be 1.0 × 1010 s−1 giving a s→ f transfer rate on the order of (100 ps)−1. Steady-atate polarization measurements were found to be equal to those calculated using the rate parameters inferred from the kinetic model fit to the fluorescence decays. The apparent decrease in the relative fluorescence quantum yield and increase of the relative transmission with increasing excitation intensity is suggestive of ground state depletion and upper excited state absorption. Evidence suggests that exciton annihilation is absent within isolated α subunits for the intensity range investigated (4 × 1013 to 4 × 1015 photons-cm 2 per pulse).  相似文献   

9.
Abstract. The respiration rates and respiratory control ratios of isolated bean mitochondria have been measured following exposure to 0, 150, 300 and 900 J/m2 of far UV radiation (190–300 nm) from a mercury vapour light source with 90% total radiant intensity at 254 nm. Loss of respiratory control occurred at 150 J/m2 and inhibition of respiration was significant at the highest exposure dosage. The uptake of both 45Ca and 85Sr have been measured following a 10min incubation of isolated mitochondria with 2 m M cation. Significant decreases in cation accumulation were observed following exposure to 900 J/m2. The effect seemed to be associated with loss of active transport of the ions as a result of respiratory uncoupling or reduced electron transport. There was no significant effect of storage on respiration or ion transport nor was there any indirect effect of irradiated suspending medium on mitochondria.  相似文献   

10.
Abstract Crystals of all- trans retinal and both different forms of 11- cis , 12-s- cis retinal were grown on quartz slides with faces (101), (001) and (101), respectively, forming thin platelets of less than 0.2 μm thickness. Polarized UV absorption spectra at room temperature were measured in the range from 20 to 43 × 103 cm−1 with a microscope-spectrophotometer. In this spectral range three diffuse absorption bands were observed for all crystal types at similar wave numbers. A main absorption band was found at 25–28 × 103 cm−1, and two further bands at 32–34 and 38–40 × 103 cm−1. In case of all- trans retinal the latter band is by far the weakest in this spectral range. Additionally, the crystal spectrum of all- trans retinal shows a shoulder at the low wavenumber side of the main band which cannot be resolved in the corresponding solution spectrum. In the crystal spectra of 11- cis , 12-s- cis retinal, however, only a strong dissymmetry is observed at this side of the main band.  相似文献   

11.
AUTOFLUORESCENCE SPECTROSCOPY OF OPTICALLY TRAPPED CELLS   总被引:2,自引:0,他引:2  
Abstract— Cellular autofluorescence spectra were monitored in a single-beam gradient force optical trap ("optical tweezers") in order to probe the physiological effects of near infrared and UVA (320–400 nm) microirradiation. Prior to trapping, Chinese hamster ovary cells exhibited weak UVA-excited autofluorescence with maxima at 455 nm characteristic of β-nicotinamide adenine dinucleotide (phosphate) emission. No strong effect of a 1064 nm NIR microbeam on fluorescence intensity and spectral characteristics was found during trapping, even for power densities up to 70 MW/cm2 and radiant exposures of 100 GJ/cm2. In contrast to the 1064 nm trap, a 760 nm trapping beam caused a two-fold autofluorescence increase within 5 min (about 20 GJ/cm2). Exposure to 365 nm UVA (1 W/cm2) during 1064 nm trapping significantly altered cellular autofluorescence, causing, within 10 min, a five-fold increase and a 6 nm red shift versus initial levels. We conclude that 1064 nm microbeams can be applied for an extended period without producing autofluorescence changes characteristic of alterations in the cellular redox state. However, 760 nm effects may occur via a two-photon absorption mechanism, which, in a manner similar to UVA exposure, alters the redox balance and places the cell in a state of oxidative stress.  相似文献   

12.
Abstract— N,N'-bis(2-ethyl-1,3-dioxolane)-kryptocyanine (EDKC), a lipophilic dye with a delocalized positive charge, photosensitizes cells to visible irradiation. In phosphate-buffered saline (PBS), EDKC absorbs maximally at 700 nm (ε= 1.2 × 105 M−1 cm−1) and in methanol, the absorption maximum is at 706 nm (ε= 2.3 × 105 M−1 cm−1). EDKC partitions from PBS into small unilamellar liposomes prepared from saturated phospholipids and into membranes prepared from red blood cells (RBC) and binds to human serum albumin (HSA). The EDKC fluorescence maximum red shifts from 713 nm in PBS to 720–725 nm in liposomes and RBC membranes and the fluorescence intensity is enhanced by factors of 14–35 compared to PBS (φ= 0.0046). EDKC is thermally unstable in PBS (T1/2= 2 h at 1.3 × 10−5 M EDKC), but stable in methanol. In liposomes and RBC membranes, EDKC is 10 times more stable than in PBS, indicating that it is only partially exposed to the aqueous phase. Quenching of EDKC fluorescence in liposomes and RBC membranes by trinitrobenzene sulfonate also indicates that EDKC is not buried within the membranes. Photodecomposition of EDKC was oxygen-dependent and occurred with a low quantum yield (6.4 × 10−4 in PBS). Singlet oxygen was not detected upon irradiation of EDKC in membranes or with HSA since the self-sensitized oxidation of EDKC occurred at the same rate in D2O as in H2O and was not quenched by sodium azide or histidine.  相似文献   

13.
Abstract— The authors performed photodynamic therapy (PDT), avoiding any hyperthermic effects, using a newly developed diode laser and photosensitizer, mono-L-aspar-tyl chlorin e6 (NPe6), of Meth-A fibrosarcoma implanted in mice and achieved tumor therapeutic benefit. The photodynamic light treatment was performed 5 h following the photosensitizer administration. With 5.0 mg/kg NPe6 and light doses of 50, 100, 150 and 200 J/cm2, the tumor cure rates were 20, 50, 70 and 90%, respectively. With 100 J/cm2 laser exposure and NPe6 doses of 1.25, 2.5, 5.0, 7.5 and 10.0 mg/kg, the tumor cure rates were 0, 20, 50, 70 and 90%, respectively. A charge-coupled device (CCD) camera system was employed to measure the NPe6 fluorescence intensity correlating with the residual amount of the photosensitizer at deferent depth from the tumor surface. The ratios of the NPe6 fluorescence intensity at 3 mm from the tumor surface following 50, 100, 150 and 200 J/cm2 laser exposure to no laser exposure were 0.73, 0.36, 0.22 and 0.16, respectively. With samples sectioned at 1 mm depth, after 50 J/cm2 and the same photosensitizer dose (5 mg/kg) this ratio was 0.19. These results suggest that a certain increase in the tumor tissue level of NPe6 and a certain increase of laser light dose reaching deeper layers of tumor caused an increase in percent cure. In addition, the effectiveness of PDT depends on the total laser dose reaching deeper layers of tumors. Furthermore, the effectiveness of PDT tends to correlate with the amount of NPe6 photobleaching by PDT.  相似文献   

14.
Abstract— Intense illumination (60-120 MW/cm2) of an oxygen-free aqueous solution of pyranine (8-hydroxypyrene-l,3,6-tri-sulfonate) by the third harmonic frequency of an Nd-Yag laser (355 nm) drives a two successive-photon oxidative process of the dye. The first photon excites the dye to its first electronic singlet state. The second photon interacts with the excited molecule, ejects an electron to the solution and deactivates the molecule to a ground state of the oxidized dye (φ+). The oxidized product, φ+, is an intensely colored compound (Λmax= 445 nm, ε= 43 000 ± 1000 M −1 cm−1) that reacts with a variety of electron donors like quinols, ascorbate and ferrous compounds. In the absence of added reductant, φ+ is stable, having a lifetime of -10 min. In acidic solutions the solvated electrons generated by the photochemical reaction react preferentially with H+. In alkaline solution the favored electron acceptor is the ground-state pyranine anion and a radical, φ, of the reduced dye is formed. The reduced product is well distinguished from the oxidized one, having its maximal absorption at 510 nm with e = 25 000 ± 2000 M-l cm−1. The oxidized radical can be reduced either by φ- or by other electron donors. The apparent second-order rate constants of these reactions, which vary from 106 up to 109M−1 s−1, are slower than the rates of diffusion-controlled reactions. Thus the redox reactions are limited by an energy barrier for electron transfer within the encounter complex between the reactants.  相似文献   

15.
Abstract— The clinical perfusion agent 99mTc-MIBI was used to monitor changes in tumor vascular perfusion (TVP) induced by Photofrin® (Pll)-mediated photodynamic therapy (PDT). BALB/c mice bearing an EMT-6 tumor on each hind thigh were given an intravenous injection of 1, 2 or 5 mg kg−1 PII. Twenty-four hours later, one tumor was illuminated (600–650 run, 200 mW cm−2 400 J cm−2) while the other served as a control. At various time intervals after PDT (0, 2 and 24 h) mice received an intravenous injection of 99mTc-hexakismethoxy(sobutyusonitri-le (MIBI) (0.18 MBq g−1) and were sacrificed 2 min later. The light-treated and the untreated tumors were then dissected, the radioactivity was counted and the percentage of the injected dose per gram of tumor (%ID g−1) was calculated as a measure of TVP. We observed that TVP is drug dose dependent, develops progressively with time post-PDT and is inversely related to PDT efficacy. Our data show that early tumor retention of 99mMIBI is a simple method to assess TVP and vascular damage induced by PDT.  相似文献   

16.
Photodynamic disinfection (PDD) is a nonantibiotic approach to treating drug-resistant bacterial infections. Pseudomonas aeruginosa , an opportunistic pathogen, is problematic because of its propensity to develop antibiotic resistance and its ability to secrete a protective biofilm matrix. This study examined the ability of PDD to eradicate planktonic and biofilm cultures of P. aeruginosa in vitro . Planktonic P. aeruginosa cultures were briefly exposed to a methylene blue-based photosensitizer formulation and subjected to energy doses ranging from 1.7 to 20.6 J cm−2 using a 670 nm nonthermal diode laser. Biofilms were grown for 24 and 48 h and exposed to photosensitizer for 30 s before illumination with 13.2 or 26.4 J of energy. A single exposure of planktonic P. aeruginosa to photosensitizer at >15.5 J cm−2 resulted in 100% eradication (>7 log10 reduction from control), an effect that could be decreased significantly in the presence of the singlet oxygen quenchers l -tryptophan and sodium azide. Decreasing the energy dose below this threshold by varying both power density and illumination duration resulted in a dose-dependent decrease in bacterial kill. In addition, 24 h biofilm viability was reduced by 99% with single exposure and 99.9% with double exposure, while 48 h biofilm viability was reduced by >99.999% with both single and double exposures. This study shows that PDD is effective in eradicating planktonic and biofilm cultures of P. aeruginosa, supporting the concept that translation into clinical practice for indications such as otitis externa and wound disinfection is a viable option.  相似文献   

17.
Aggregation of zinc 71-hydroxyl-132-demethoxycarbonyl-pheophytin a (Zn-71-OH-Chl) was examined in relation to the structure and function of the self-aggregates of 31-OH-type chlorophylls (Chi) in chlorosomes of green photosynthetic bacteria. The Zn-71-OH-Chl aggregates yielded a Qy absorption band at 712 nm with a 1.2-fold larger width (full width at half maximum, 500 cm−1) than the monomer's (420 cm−1). Infrared and NMR spectroscopies revealed that each molecule in the aggregate links together with simultaneous coordination (C71-OH…Zn) and hydrogen bonding (C71-OH … O=C131). A nonlinear alignment of the constituent molecules in the oligomeric structure was assumed. Despite the similar molecular linkages, linearly aligned Qy, moments in the Zn-31-OH-Chl aggregate gave a chlorosome-like broader, more redshifted Qy band (740 nm; 670 cm−1, 2.1-fold larger than the monomer's). Because it is advantageous for efficient light harvesting and energy transfer to have several Qy, spectral components, spread over a wide spectral range, that can act as the energy gradient, it is concluded that not only the intermolecular linkages but the linear locations of OH, C=0 and Mg in the molecule are crucial for photosynthetic antenna of the self-assembled chiorosomal Chl.  相似文献   

18.
Lutetium texaphyrin, PCI-0123, is a pure, water-soluble photosensitizer with a large broad absorption band centered at 732 nm. The compound was tested for photodynamic therapy (PDT) effectiveness in a murine mammary cancer model. The texaphyrin macrocycle as illustrated by magnetic resonance imaging and 14C-radiolabeled texaphyrin studies was shown to be tumor selective; a tumor-to-muscle ratio of 10.55 was seen after 5 h. Lutetium texaphyrin, at a drug dose of 20 μmol/kg with irradiation 5 h postinjection at 150 J/cm2 and 150 mW/cm2, had significant efficacy (P < 0.0001) in treating neoplasms of moderate size (40 ± 14 mm3) and also had significant efficacy ( P < 0.0001) in treating larger neoplasms (147 ± 65 mm3). The PDT efficacy was correlated with the time interval between PCI-0123 administration and light exposure. A 100% cure rate was achieved when photoirradiation took place 3 h postinjection compared to 50% for 5 h using 10 μmol/kg and 150 J/cm2 at 150 mW/cm2. The PDT efficacy was attributable to the selective uptakehetention of the texaphyrin photosensitizer in addition to the depth of light penetration achievable at the 732 nm laser irradiation.  相似文献   

19.
RESOLVED FLUORESCENCE EMISSION SPECTRA OF IRON-FREE CYTOCHROME c   总被引:3,自引:0,他引:3  
Abstract The fluorescence emission of iron-free cytochrome c (0Cyt c ) in a glassy matrix was investigated under conditions of very low temperature (4.2 K.) and narrow bandwidth laser excitation. Excitation into the vibronic band, Q x (1,0) resulted in highly resolved emission spectra of linewidth 10-20 cm−1. Using the model of selective excitation developed by Abram el al. (1975) and McColgan et al. (1978), the emission spectra of vibronic excitation afforded a method to investigate excited state vibrational structure. Furthermore, emission profiles have shown that in 0Cyt c , the site distribution (inhomogeneous broadening) has a width in the order of 200cm−1.  相似文献   

20.
Abstract— A Xenon-chloride excimer laser emitting energy at 308 nm was used to induce single-strand breaks (SSBs, frank breaks plus alkali-labile lesions as assayed by alkaline sucrose sedimentation techniques) in purified DNA from Bacillus subtilis . A fluence response study and a peak pulse intensity study were performed. At a pulse energy of 0.1 mJ/pulse, the radiation induced SSBs in a linear fashion (91 SSB/108 Da per MJ/m2) to a maximum exprimental fluence of 1.28 MJ/m2. The pulse intensity study showed that there were no significant changes in DNA breakage (105 SSB/108 Da) between 2.93 times 109 and 5.86 times 1011 W/m2 (0.11 and 22.0 mJ/pulse) at a constant total fluence of 1.1 MJ/m2 (27000 mJ dose). This study has verified and extended previous work by quantifying the yield of SSBs induced in DNA by this laser radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号