首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We introduce models for static and quasi-static damage in elastic materials, based on a strain threshold, and then investigate the relationship between these threshold models and the energy-based models introduced in Francfort and Marigo (Eur J Mech A Solids 12:149–189, 1993) and Francfort and Garroni (Ration Mech Anal 182(1):125–152, 2006). A somewhat surprising result is that, while classical solutions for the energy models are also threshold solutions, this is shown not to be the case for nonclassical solutions, that is, solutions with microstructure. A new and arguably more physical definition of solutions with microstructure for the energy-based model is then given, in which the energy minimality property is satisfied by sequences of sets that generate the effective elastic tensors, rather than by the tensors themselves. We prove existence for this energy-based problem, and show that these solutions are also threshold solutions. A by-product of this analysis is that all local minimizers, in both the classical setting and for the new microstructure definition, are also global minimizers.  相似文献   

2.
We give a general monotonicity formula for local minimizers of free discontinuity problems which have a critical deviation from minimality, of order d ? 1. This result allows us to prove partial regularity results (that is closure and density estimates for the jump set) for a large class of free discontinuity problems involving general energies associated to the jump set, as for example free boundary problems with Robin conditions. In particular, we give a short proof to the De Giorgi–Carriero–Leaci result for the Mumford–Shah functional.  相似文献   

3.
We study global minimizers of a continuum Landau–De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W 1,2, to a global minimizer predicted by the Oseen–Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen–Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau–De Gennes global minimizer. We also study the interplay between biaxiality and uniaxiality in Landau–De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions.  相似文献   

4.
In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive–attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin.  相似文献   

5.
An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions, the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, from the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.  相似文献   

6.
Periodic and quasi-periodic solutions of the n-body problem can be found as minimizers of the Lagrangian action functional restricted to suitable spaces of symmetric paths. The main purpose of this paper is to develop a systematic approach to the equivariant minimization for the three-body problem in three-dimensional space. First we give a finite complete list of symmetry groups fitting to the minimization of the action, with the property that any other symmetry group can be reduced to be isomorphic to one of these representatives. A second step is to prove that the resulting (local and global) symmetric action-minimizers are always collisionless (when they are not already bound to collisions). Furthermore, we prove some results which address the question of whether minimizers are planar or non-planar; as a consequence of our theory we will give general criteria for a symmetry group to yield planar or homographic minimizers (either homographic or not, as in the Chenciner-Montgomery eight solution). On the other hand we will provide a rigorous proof of the existence of some interesting one-parameter families of periodic and quasi-periodic non-planar orbits. These include the choreographic Marchal's P12 family with equal masses – together with a less-symmetric choreographic family (which anyway probably coincides with the P12 family).  相似文献   

7.
In this paper we investigate the role of Parodi’s relation in the well-posedness and stability of the general Ericksen–Leslie system modeling nematic liquid crystal flows. First, we give a formal physical derivation of the Ericksen–Leslie system through an appropriate energy variational approach under Parodi’s relation, in which we can distinguish the conservative/dissipative parts of the induced elastic stress. Next, we prove global well-posedness and long-time behavior of the Ericksen–Leslie system under the assumption that the viscosity μ 4 is sufficiently large. Finally, under Parodi’s relation, we show the global well-posedness and Lyapunov stability for the Ericksen–Leslie system near local energy minimizers. The connection between Parodi’s relation and linear stability of the Ericksen–Leslie system is also discussed.  相似文献   

8.
We present an existence theorem for a large class of nonlinearly elastic shells with low regularity in the framework of a two-dimensional theory involving the mean and Gaussian curvatures. We restrict our discussion to hyperelastic materials, that is to elastic materials possessing a stored energy function. Under some specific conditions of polyconvexity, coerciveness and growth of the stored energy function, we prove the existence of global minimizers. In addition, we define a general class of polyconvex stored energy functions which satisfies a coerciveness inequality.  相似文献   

9.
We consider periodic and quasi-periodic solutions of the three-body problem with homogeneous potential from the point of view of equivariant calculus of variations. First, we show that symmetry groups of the Lagrangian action functional can be reduced to groups in a finite explicitly given list, after a suitable change of coordinates. Then, we show that local symmetric minimizers are always collisionless, without any assumption on the group other than the fact that collisions are not forced by the group itself. Moreover, we describe some properties of the resulting symmetric collisionless minimizers (Lagrange, Euler, Hill-type orbits and Chenciner–Montgomery figure-eights).  相似文献   

10.
Strained epitaxial films grown on a relatively thick substrate are considered in the context of plane linear elasticity. The total free energy of the system is assumed to be the sum of the energy of the free surface of the film and the strain energy. Because of the lattice mismatch between film and substrate, flat configurations are in general energetically unfavorable and a corrugated or islanded morphology is the preferred growth mode of the strained film. After specifying the functional setup in which the existence problem can be properly framed, a study of the qualitative properties of the solutions is undertaken. New regularity results for volume-constrained local minimizers of the total free energy are established, leading, as a byproduct, to a rigorous proof of the zero-contact-angle condition between islands and wetting layers.  相似文献   

11.
We consider the asymptotic behavior and local structure of solutions to the nonlocal variational problem developed in the companion article to this work, On a Model of Nonlocal Continuum Mechanics Part I: Existence and Regularity. After a brief review of the basic setup and results of Part I, we conduct a thorough analysis of the phase plane related to an integro-differential Euler--Lagrange equation and classify all admissible structures that arise as energy minimizing strain states. We find that for highly elastic materials with relatively weak particle-particle interactions, the maximum number of internal phase boundaries is two. Moreover, we also develop explicit bounds for the number of internal phase boundaries supported by any material and show that this bound is essentially inversely related to the particle size. To understand the question of asymptotics, we utilize the Young measure and show that in the sense of energetics and averages, minimizers of the full nonlocal problem converge to minimizers of two limiting problems corresponding to both the large and small particle limits. In fact, in the small particle limit, we find that the minimizing fields converge, up to a subsequence in strong-Lp, for 1 ≤ p < ∞, to fields that support either a single internal phase boundary, or two internal phase boundaries that are distributed symmetrically about the body midpoint. We close this work with some computations that illustrate these asymptotic limits and provide insight into the notion of nonlocal metastability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
This is the first in a series of two papers in which we derive a Γ-expansion for a two-dimensional non-local Ginzburg–Landau energy with Coulomb repulsion, also known as the Ohta–Kawasaki model, in connection with diblock copolymer systems. In that model, two phases appear, which interact via a nonlocal Coulomb type energy. We focus on the regime where one of the phases has very small volume fraction, thus creating small “droplets” of the minority phase in a “sea” of the majority phase. In this paper we show that an appropriate setting for Γ-convergence in the considered parameter regime is via weak convergence of the suitably normalized charge density in the sense of measures. We prove that, after a suitable rescaling, the Ohta–Kawasaki energy functional Γ-converges to a quadratic energy functional of the limit charge density generated by the screened Coulomb kernel. A consequence of our results is that minimizers (or almost minimizers) of the energy have droplets which are almost all asymptotically round, have the same radius and are uniformly distributed in the domain. The proof relies mainly on the analysis of the sharp interface version of the energy, with the connection to the original diffuse interface model obtained via matching upper and lower bounds for the energy. We thus also obtain an asymptotic characterization of the energy minimizers in the diffuse interface model.  相似文献   

13.
In this paper we consider the problem of adhesive frictionless contact of an elastic half-space by an axi-symmetric punch. We obtain integral equations that define the tractions and displacements normal to the surface of the half-space, as well as the size of the contact regions, for the cases of circular and annular contact regions. The novelty of our approach resides in the use of Betti’s reciprocity theorem to impose equilibrium, and of Abel transforms to either solve or substantially simplify the resulting integral equations. Additionally, the radii that define the annular or circular contact region are defined as local minimizers of the function obtained by evaluating the potential energy at the equilibrium solutions for each pair of radii. With this approach, we rather easily recover Sneddon’s formulas (Sneddon, Int. J. Eng. Sci., 3(1):47–57, 1965) for circular contact regions. For the annular contact region, we obtain a new integral equation that defines the inverse Abel transform of the surface normal displacement. We solve this equation numerically for two particular punches: a flat annular punch, and a concave punch.  相似文献   

14.
We present a real-space, non-periodic, finite-element formulation for Kohn-Sham density functional theory (KS-DFT). We transform the original variational problem into a local saddle-point problem, and show its well-posedness by proving the existence of minimizers. Further, we prove the convergence of finite-element approximations including numerical quadratures. Based on domain decomposition, we develop a parallel finite-element implementation of this formulation capable of performing both all-electron and pseudopotential calculations. We assess the accuracy of the formulation through selected test cases and demonstrate good agreement with the literature. We also evaluate the numerical performance of the implementation with regard to its scalability and convergence rates. We view this work as a step towards developing a method that can accurately study defects like vacancies, dislocations and crack tips using density functional theory (DFT) at reasonable computational cost by retaining electronic resolution where it is necessary and seamlessly coarse-graining far away.  相似文献   

15.
In this paper we suggest a direct method for studying local minimizers of one-dimensional variational problems which naturally complements the classical local theory. This method allows us both to recover facts of the classical local theory and to resolve a number of problems which were previously unreachable. The basis of these results is a regularity theory (a priori estimates and compactness in C 1) for solutions of obstacle problems with sufficiently close obstacles. In these problems we establish that solutions exist and inherit regularity of the obstacles even under assumptions on integrands that are much weaker than those required in the classical local theory.  相似文献   

16.
This paper deals with necessary conditions and sufficient conditions for a weak local minimum of the energy of a hyperelastic body. We consider anisotropic bodies of arbitrary shape, subject to prescribed displacements on a given portion of the boundary. As an example, we consider the uniaxial stretching of a cylinder, in the two cases of compressible and incompressible material. In both cases we find that there is a continuous path across the natural state, made of local energy minimizers. For the Blatz-Ko compressible material and for the Mooney-Rivlin incompressible material, explicit estimates of the minimizing path are given and compared with those available in the literature. Dedicated to the memory of Victor J. Mizel.  相似文献   

17.
We study critical points of a Ginzburg–Landau type functional with an attractive–repulsive–attractive nonlocal interaction. Using an appropriate scaling and -convergence method we reduce the problem to a finite dimensional one. In contrast to a similar problem with just an attractive–repulsive interaction, we obtain a richer set of solutions. The soliton-stripe patterns appear as skewed local minimizers of the free energy, and disappear or become symmetric as the number of interfaces reaches a certain threshold. We also show how other critical points can be constructed using results of the diblock copolymer problem.  相似文献   

18.
By adding one variable to the equality-or inequality-constrained minimization problems, a new simple penalty function is proposed. It is proved to be exact in the sense that under mild assumptions, the local minimizers of this penalty function are precisely the local minimizers of the original problem, when the penalty parameter is sufficiently large.  相似文献   

19.
20.
We deal with quasistatic evolution problems in plasticity with softening, in the framework of small strain associative elastoplasticity. The presence of a nonconvex term due to the softening phenomenon requires a nontrivial extension of the variational framework for rate-independent problems to the case of a nonconvex energy functional. We argue that, in this case, the use of global minimizers in the corresponding incremental problems is not justified from the mechanical point of view. Thus, we analyse a different selection criterion for the solutions of the quasistatic evolution problem, based on a viscous approximation. This leads to a generalized formulation in terms of Young measures, developed in the first part of the paper. In the second part we apply our approach to some concrete examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号