首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为了充分掌握磁流变抛光中磁场强度、浸入深度、抛光轮转速、磁流变液水分含量等工艺参数对抛光结果的影响规律,以期提高元件的面形精度和表面的质量,在研究了磁流变抛光材料的去除数学模型的基础上,结合实验室的PKC100-P1型抛光设备,对上述的关键工艺参数分别进行了研究,设置了一系列的实验参数,进行了详细的实验探索,分析了单因素条件下材料的去除量以及元件表面质量同关键工艺参数的内在联系,得出了相应影响关系曲线。从关系曲线表明:工艺参数对抛光斑的去除效率以及被加工元件表面质量存在着明显的影响规律,掌握这些影响关系就能用于分析和优化磁流变加工的结果,为高精度光学表面的加工提供可靠的保障,同时实验的结果也很好地验证了磁流变抛光材料去除理论的正确性。  相似文献   

2.
磁流变抛光材料去除的研究   总被引:6,自引:0,他引:6  
磁流变抛光是近十年来的一种新兴的先进光学制造技术 ,它利用磁流变抛光液在梯度磁场中发生流变而形成的具有粘塑行为的柔性“小磨头”进行抛光。被抛光光学元件的材料去除是在抛光区内实现的。首先简要阐述了磁流变抛光的抛光机理 ,然后利用标准磁流变抛光液进行抛光实验。研究了磁流变抛光中几种主要工艺参数对抛光区的大小和形状以及材料去除率的影响情况。最后给出了磁流变抛光材料去除的规律。  相似文献   

3.
磁流变技术研究及其在光学加工中的应用   总被引:3,自引:0,他引:3  
康桂文  张飞虎  董申 《光学技术》2004,30(3):354-356
介绍了磁流变技术的基本原理及其应用。利用磁流变液在磁场作用下形成的高剪切应力,可以利用磁场形成可变硬度的磁流变液对光学零件进行可控的抛光加工。美国Rochester大学率先进行了应用磁流变液对光学零件进行抛光方面的研究。磁流变抛光获得的表面具有纳米级表面粗糙度。  相似文献   

4.
杨航  刘小雍  马登秋  张云飞  黄文  何建国 《强激光与粒子束》2019,31(2):022001-1-022001-7
一阶不连续光学元件的磁流变抛光问题是制约我国高精高效光学制造领域发展的难题之一,其涉及锥形、矩形等几何形貌元件的光学元件加工问题以及常见光学元件的边缘效应控制问题。提出了基于一阶不连续光学元件的磁流变抛光流体动力学方法,建立了该类元件抛光区域流体动力分析的理论方法和数值手段。首先,对磁流变抛光工况下的流场进行了合理假设,其次,从微元流体动力方程出发,建立了适用于一阶不连续面形的流场分析方法,最后,基于有限差分法和数值迭代方法建立了流场控制方程的数值计算方法。通过对切入距离为1~18 mm的抛光过程进行数值仿真,发现该方法所获取的一阶不连续面形的压力分布形态是正确的,产生的不连续压降与实验观测一致。  相似文献   

5.
利用永磁流变抛光技术制造高精度光学元件是一项极具前景的超精密制造技术。对一台五轴联动磁流变数控抛光系统的结构特点、功能特色及关键部件的设计进行了阐述。在此基础上,结合装置开展基础试验,对磁流变抛光过程中的主要控制参量如抛光轮下压量、抛光轮速度等对材料去除特性的影响进行了研究。开展了磁流变抛光对提高工件(K9玻璃)表面粗糙度效果的抛光试验,结果证明该套系统具有良好的磁流变抛光特性,抛光23min后工件表面粗糙度降低到0 6739nm。  相似文献   

6.
大口径光学元件磁流变抛光工艺软件设计   总被引:3,自引:3,他引:0       下载免费PDF全文
 基于磁流变抛光机理,采用简森-范锡图特法求解驻留时间函数以确定磁流变抛光工艺软件的核心算法设计,开展工艺软件全过程模块化、流程化设计,进行功能模块测试。软件开发过程中兼顾各功能模块间关系耦合,并完成工艺软件的代码集成测试。开展500 mm口径的微晶平面反射镜的验证实验,结果表明元件面形值获得快速有效收敛。证实了所设计的工艺软件能够精准地指导大口径光学元件的磁流变加工。  相似文献   

7.
内凹面磁流变槽路抛光方法的研究   总被引:1,自引:0,他引:1  
针对高陡度非球面光学元件的内凹面抛光难题,提出了一种内凹面磁流变槽路抛光方法。设计与待加工内凹面形状匹配的凸模,并在凸模上开出供磁流变液循环通过的槽路,当磁流变液经过设有磁场的区域时发生流变作用形成柔性抛光磨头对内凹面产生材料去除作用。通过工件的旋转和外部磁极的移动完成对整个内凹面的抛光加工。建立了实验平台并开展了相关初步实验和分析。结果表明该方法能够适应内凹面抛光加工的需要,可获得较高表面质量,具有一定的可行性和应用潜力。  相似文献   

8.
磁流变抛光数学模型的建立   总被引:15,自引:1,他引:14  
张峰 《光学技术》2000,26(2):190-192
介绍了近年来的一种新兴的光学加工技术———磁流变抛光 (MRF)。以Preston方程为依据建立了这种抛光方法的数学模型。利用该数学模型详细分析了被加工工件表面材料去除率与压力参数P成正比的关系 ,指出了工件表面所受的压力P主要是由流体动压力Pd 和磁化压力Pm 两部分组成的。以用磁流变抛光方法加工凸球面工件为例 ,具体推导出流体动压力Pd 和磁化压力Pm 的数学表达式 ,并通过实验对压力P的数学表达式及抛光模型的合理性进行了验证。  相似文献   

9.
平面光学元件的浸入深度、凸球面光学元件的浸入深度、凸球面光学元件的曲率半径不同会使磁流变抛光入口区域剪切力场发生变化.为了研究磁流变抛光入口区域剪切力场的形成机制,建立磁流变抛光过程中必要的流体模型,对入口区域的几何特征进行分析;通过数值计算平面光学元件不同浸入深度、凸球面光学元件不同浸入深度、凸球面光学元件不同曲率半...  相似文献   

10.
光学玻璃研抛用磁流变液的研究   总被引:9,自引:0,他引:9  
仇中军  张飞虎  董申 《光学技术》2002,28(6):497-498
利用智能材料之一的磁流变液 (MRfluids)作为加工工具对光学玻璃进行了精密抛光加工。讨论了适用于光学玻璃抛光的磁流变液的配制机理及磁流变液对光学玻璃抛光效果的影响因素。针对光学玻璃磁流变的抛光原理和特点 ,开发配制了适合于光学玻璃加工用的磁流变液 ,并用该磁流变液对光学玻璃进行了实验加工。结果表明 ,最终得到的光学玻璃表面经过AFM测试 ,得到Ra =1 0 1 5nm。  相似文献   

11.
针对磁流变抛光过程中抛光轨迹会引入迭代误差的问题,设计了步长和行距随光学表面梯度自适应变化的光栅线抛光轨迹。首先根据光学元件的表面误差分布,利用标准五点法获得面形各点的梯度值,再基于聚类离散思想将所有面形点根据梯度值大小进行了归类,从而得到轨迹步长和行距随面形误差变化的自适应轨迹。在自研的磁流变加工机床上进行了实验研究,将一块直径50mm的微晶玻璃,从峰谷值为65nm、均方根值为12nm收敛到峰谷值为21nm、均方根值为2.5nm,并且在加工后的表面功率谱密度曲线上没有出现明显的尖峰误差。实验结果表明,这种自适应轨迹能有效抑制中高频误差。  相似文献   

12.
为了解决大口径光学元件磁流变高精度加工问题,基于矩阵运算模型,提出了SBB(Subspace Barzilai and Borwein)最小非负二乘与自适应Tikhonov正则化相结合的驻留时间快速求解方法。同时,在一次收敛中采用双去除函数优化螺旋线轨迹下光学元件的加工,保证中心区域与全口径面形精度一致。仿真表明该算法与常用Lawson-Hanson最小非负二乘法相比,计算精度一致且求解效率大幅提高。对Φ600mm以彗差为主的光学表面模拟加工,峰谷(PV)值和均方根(RMS)值从初始的2.712λ与0.461λ中心区域全局一致收敛到0.306λ和0.0199λ(λ=632.8nm)。因此,提出的算法能够在有效保证面形收敛精度的同时快速获得稳定可靠的驻留时间分布,为磁流变抛光应用于大口径光学元件提供有力支持。  相似文献   

13.
基于传统抛光的亚表面损伤层厚度,进行磁流变去除亚表面损伤层的实验以便验证在该加工方式下对元件中频误差的影响。计算机模拟结果及实验数据表明:磁流变加工的走刀间距会引起中频误差评价指标PSD曲线出现对应频率的峰值;抛光斑的不稳定性会引起PSD曲线出现不确定的次主峰;去除深度与PSD曲线峰值之间有近似的线性关系。采用磁流变作为亚表面损伤层的去除手段,元件的中频误差质量受加工参数影响很大。如果前级加工不佳导致留下的亚表面损伤层较深,用磁流变加工进行去除时会造成中频误差质量超过限定指标。1  相似文献   

14.
针对非球面光学元件连续变曲率的特点,提出了一种基于平面抛光斑演变获取非球面磁流变抛光去除函数的技术思路。通过分析磁流变抛光机理,建立了磁流变抛光多因素耦合作用模型。基于该模型提出磁流变抛光去除函数获取的微分解耦方法,实现对抛光斑形成机制中的几何因素解耦,发现当工艺条件变化较小时,在空间中的特定点处,去除效率的变化量与工件浸入深度的改变量呈线性关系。实验观测的20个点中,有17处决定系数在90%以上,另外3处在80%以上,峰值去除率和体积去除率演变的决定系数分别达到92%和94%,实验验证了这一结论。  相似文献   

15.
近年来,磁流变抛光作为一种确定性加工方法已成为获得高精度非球面的重要手段。作者以回转对称二次抛物面为例,分析了磁流变抛光中使用抛光轮校正工件位置的理论方法,并通过实验在Φ230 mm熔石英样件上验证对刀理论,分别在X方向和Y方向以少于3次的调整次数校正工件位置,实现了X方向、Y方向偏置量均低于0.009 mm;采用磁流变抛光技术对工件进行了修形实验验证,加工后面形精度RMS由λ/7收敛至λ/40。实验结果表明:作者提出的非球面工件位置对刀校正方法简单、可靠,能够很好地对工件进行精确定位,利于高精度非球面磁流变抛光加工。  相似文献   

16.
磁流变液是一种分散体系,通过对分散体系稳定性的研究,并结合磁流变抛光的实际需求,确定了磁流变抛光液添加组分,配制出了适合于光学加工的水基磁流变抛光液。所配制的磁流变液初始粘度仅为0.2Pa·s,利用磁流变仪检测所配制磁流变液在剪切率为1s-1,磁场强度为0.35T时,剪切应力达42.5kPa。利用所配制的磁流变抛光液分别对K9玻璃和Si材料进行抛光,经过2h持续抛光,K9玻璃和Si材料去除函数的峰值去除量相对变化率分别为0.15%和0.22%,体积去除量相对变化率分别为1%和0.88%,去除函数的峰值去除率分别达到4.83μm/min和1.376μm/min。结果验证了所配制的抛光液具有极好的稳定性以及较高的去除效率,能够保证抛光材料的快速去除和高效收敛。  相似文献   

17.
探讨了一种进行磁流变抛光的方法,针对该方法的运动方式进行了磁流变抛光过程中相对速度和驻留时间的计算,并模拟了相对速度与工件口径、相对速度和时间乘积与工件口径的关系曲线。在理论分析的基础上,进行了相应的工艺实验,分析了该磁流变抛光方法的去除特性,并对中心区域去除特性的不同原因进行了探讨。实验结果研究表明:采用该方法能够实现光学零件除中心区域外的均匀去除。  相似文献   

18.
针对高功率激光器中使用的激光晶体关键元件,开展了晶体的先进加工技术的研究。根据LBO及YCOB晶体材料的加工特性,选取了定向切割、研磨、预抛光、磁流变抛光、合成盘抛光和机械化学抛光的总体技术路线。对不同种类晶体加工设计了不同的工艺路线,开展了相关加工工艺研究。其中LBO晶体的面形收敛工艺主要采用磁流变抛光,YCOB晶体的面形工艺主要采用合成盘抛光。通过组合加工工艺,获得了高质量的晶体加工指标,LBO晶体透射波前0.12λ(λ=632.8nm),粗糙度0.77nm;YCOB晶体面形0.11λ,粗糙度0.68nm。确定了晶体元件的整体加工技术路线,并对整个工艺流程开展了工艺实验研究,取得了较好的实验效果,实现了激光晶体的高质量加工指标。  相似文献   

19.
光学元件亚表面缺陷的损伤性检测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
在磨削、研磨和抛光加工过程中产生的微裂纹、划痕、残余应力等亚表面缺陷会导致熔石英元件抗激光损伤能力下降,如何快速、准确地检测亚表面损伤成为光学领域亟待解决的关键问题。采用HF酸蚀刻法、角度抛光法和磁流变斜面抛光法对熔石英元件在研磨加工中产生的亚表面缺陷形貌特征及损伤深度进行了检测和对比分析,结果表明,不同检测方法得到的亚表层损伤深度的检测结果存在一定差异,HF酸蚀刻法检测得到的亚表面损伤深度要比角度抛光法和磁流变斜面抛光法检测结果大一些。且采用的磨粒粒径越大,试件表面及亚表面的脆性断裂现象越严重,亚表面缺陷层深度越大。  相似文献   

20.
针对超薄光学元件在加工过程中因重力和磨头产生应力形变的特点,提出了一种高效、先进的超薄光学元件综合加工方法。该方法综合运用了精密铣磨、精密抛光、离子束修形等先进技术进行面形控制。在铣磨阶段采用受力分析和误差补偿的方法降低了元件变形引入的面形误差;在抛光阶段通过气囊抛光和沥青抛光的迭代实现了面形快速收敛;在离子束加工阶段充分利用其非接触、无应力的加工特点实现了高精度面形修正。实验选择径厚比为34(边长152 mm,厚度6.35 mm)的方形融石英材料进行加工实验。结果表明:在铣磨、抛光、修形阶段的各项指标都达到了精密光学元件的加工水平,最终的面形精度为PV=25 nm,RMS=1.5 nm。该加工方法可以广泛应用于超薄光学元件的高精度加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号