首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this work, we present a novel power penalty method for the approximation of a global solution to a double obstacle complementarity problem involving a semilinear parabolic differential operator and a bounded feasible solution set. We first rewrite the double obstacle complementarity problem as a double obstacle variational inequality problem. Then, we construct a semilinear parabolic partial differential equation (penalized equation) for approximating the variational inequality problem. We prove that the solution to the penalized equation converges to that of the variational inequality problem and obtain a convergence rate that is corresponding to the power used in the formulation of the penalized equation. Numerical results are presented to demonstrate the theoretical findings.  相似文献   

4.
Zhao  Jian-Xun  Wang  Song 《Numerical Algorithms》2020,85(2):571-589
Numerical Algorithms - We propose an interior penalty method to solve a nonlinear obstacle problem arising from the discretization of an infinite-dimensional optimization problem. An interior...  相似文献   

5.
In this work we study an interior penalty method for a finite-dimensional large-scale linear complementarity problem (LCP) arising often from the discretization of stochastic optimal problems in financial engineering. In this approach, we approximate the LCP by a nonlinear algebraic equation containing a penalty term linked to the logarithmic barrier function for constrained optimization problems. We show that the penalty equation has a solution and establish a convergence theory for the approximate solutions. A smooth Newton method is proposed for solving the penalty equation and properties of the Jacobian matrix in the Newton method have been investigated. Numerical experimental results using three non-trivial test examples are presented to demonstrate the rates of convergence, efficiency and usefulness of the method for solving practical problems.  相似文献   

6.
7.
8.
We propose a power penalty method for a mixed nonlinear complementarity problem (MNCP) and show that the solution to the penalty equation converges to that of the MNCP exponentially as the penalty parameter approaches infinity, provided that the mapping involved in the MNCP is both continuous and ξ-monotone. Furthermore, a convergence theorem is established when the monotonicity assumption on the mapping is removed. To demonstrate the usefulness and the convergence rates of this method, we design a non-trivial test MNCP problem arising in shape-preserving bi-harmonic interpolation and apply our method to this test problem. The numerical results confirm our theoretical findings.  相似文献   

9.
10.
We consider an abstract optimal control problem with additional equality and inequality state and control constraints, we use the exterior penalty function to transform the constrained optimal control problem into a sequence of unconstrained optimal control problems, under conditions in control lie in L 1, the sequence of the solution to the unconstrained problem contains a subsequence converging of the solution of constrained problem, this convergence is strong when the problemis non convex, and is weak if the problemis convex in control. This generalizes the results of P.Nepomiastcthy [4] where he considered the control in the Hilbert space L 2(I,? m ).  相似文献   

11.
12.
13.
The problem retained for the ROADEF’99 international challenge was an inventory management problem for a car rental company. It consists in managing a given fleet of cars in order to satisfy requests from customers asking for some type of cars for a given time period. When requests exceed the stock of available cars, the company can either offer better cars than those requested, subcontract some requests to other providers, or buy new cars to enlarge the available stock. Moreover, the cars have to go through a maintenance process at a regular basis, and there is a limited number of workers that are available to perform these maintenances. The problem of satisfying all customer requests at minimum cost is known to be NP-hard. We propose a solution technique that combines two tabu search procedures with algorithms for the shortest path, the graph coloring and the maximum weighted independent set problems. Tests on benchmark instances used for the ROADEF’99 challenge give evidence that the proposed algorithm outperforms all other existing methods (thirteen competitors took part to this contest).  相似文献   

14.
In this paper, we address a class of semivectorial bilevel programming problem in which the upper level is a scalar optimization problem and the lower level is a linear multi-objective optimization problem. Then, we present a new penalty function method, which includes two different penalty parameters, for solving such a problem. Furthermore, we give a simple algorithm. Numerical examples show that the proposed algorithm is feasible.  相似文献   

15.
Summary Given a random sample of sizen from a densityf 0 on the real line satisfying certain regularity conditions, we propose a nonparametric estimator forψ 0=−f 0 /f0. The estimate is the minimizer of a quadratic functional of the formλJ(ψ)+∫[ψ 2−2ψ′]dFn where λ>0 is a smoothing parameter,J(·) is a roughness penalty, andF n is the empirical c.d.f. of the sample. A characterization of the estimate (useful for computational purposes) is given which is related to spline functions. A more complete study of the caseJ(ψ)=∫[d 2ψ/dx2]2 is given, since it has the desirable property of giving the maximum likelihood normal estimate in the infinite smoothness limit (λ→∞). Asymptotics under somewhat restrictive assumptions (periodicity) indicate that the estimator is asymptotically consistent and achieves the optimal rate of convergence. This type of estimator looks promising because the minimization problem is simple in comparison with the analogous penalized likelihood estimators. This research was supported by the Office of Naval Research under Grant Number N00014-82-C-0062.  相似文献   

16.
A well-known approach to constrained minimization is via a sequence of unconstrained optimization computations applied to a penalty function. This paper shows how it is possible to generalize Murphy's penalty method for differentiable problems of mathematical programming (Ref. 1) to solve nondifferentiable problems of finding saddle points with constraints. As in mathematical programming, it is shown that the method has the advantages of both Fiacco and McCormick exterior and interior penalty methods (Ref. 2). Under mild assumptions, the method has the desirable property that all trial solutions become feasible after a finite number of iterations. The rate of convergence is also presented. It should be noted that the results presented here have been obtained without making any use of differentiability assumptions.  相似文献   

17.
The motion of a vibrating string constrained to remain above a material concave obstacle is studied. It is assumed that the string does not lose energy when it hits the obstacle. A set of natural inequations describes this model; an energy condition in an ad hoc form must be added to ensure uniqueness. Existence and uniqueness are proved for the Cauchy problem; the case of an infinite string and the case of a finite string with fixed ends are considered.  相似文献   

18.
A penalty function method for solving inverse optimal value problem   总被引:2,自引:0,他引:2  
In order to consider the inverse optimal value problem under more general conditions, we transform the inverse optimal value problem into a corresponding nonlinear bilevel programming problem equivalently. Using the Kuhn–Tucker optimality condition of the lower level problem, we transform the nonlinear bilevel programming into a normal nonlinear programming. The complementary and slackness condition of the lower level problem is appended to the upper level objective with a penalty. Then we give via an exact penalty method an existence theorem of solutions and propose an algorithm for the inverse optimal value problem, also analysis the convergence of the proposed algorithm. The numerical result shows that the algorithm can solve a wider class of inverse optimal value problem.  相似文献   

19.
Motivated by the search for non-negative solutions of a system of Eikonal equations with Dirichlet boundary conditions, we discuss in this Note a method for the numerical solution of parabolic variational inequality problems for convex sets such as K={v∣v∈H01(Ω), v?ψ a.e. on Ω}. The numerical methodology combines penalty and Newton's method, the linearized problems being solved by a conjugate gradient algorithm requiring at each iteration the solution of a linear problem for a discrete analogue of the elliptic operator I?μΔ. Numerical experiments show that the resulting method has good convergence properties, even for small values of the penalty parameter. To cite this article: R. Glowinski et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

20.
Demand and supply pattern for most products varies during their life cycle in the markets. In this paper, the author presents a transportation problem with non-linear constraints in which supply and demand are symmetric trapezoidal fuzzy value. In order to reflect a more realistic pattern, the unit of transportation cost is assumed to be stochastic. Then, the non-linear constraints are linearized by adding auxiliary constraints. Finally, the optimal solution of the problem is found by solving the linear programming problem with fuzzy and crisp constraints and by applying fuzzy programming technique. A new method proposed to solve this problem, and is illustrated through numerical examples. Multi-objective goal programming methodology is applied to solve this problem. The results of this research were developed and used as one of the Decision Support System models in the Logistics Department of Kayson Co.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号