首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
All iron ions in the Cu1 and Cu2 local lattice sites of the YBa2(Cu0.9 57Fe0.1)3O7.01 superconductor with T c=31 K experienced magnetic ordering below T m=22 K. Therefore, at T < T m, magnetic ordering coexisted with superconductivity. According to the Mössbauer spectroscopy data, iron ions in Cu2 (Fe2) sites were in the low-spin state at T < T m(S= 3/2 or 1/2), whereas an equal number of iron ions in Cu1 (Fe1) sites were in the high-spin Fe3+ state (S=5/2). The magnetic transition near T m changed iron ion spin states-low-spin ions turned into high-spin ions, and vice versa. This preserved the spin balance between iron ions in the Cu1 and Cu2 layers. Control measurements on other samples of the YBa2(Cu1? x Fex)3O7±δ series substantiated these conclusions.  相似文献   

2.
It is shown here, that the superconducting (SC) R1.5Ce0.5RuSr2Cu2O10-δ (RCeRuSCO, R= Eu and Gd) materials (Tc ~ 32 and 42 K) are also antiferromagnetically (AFM) ordered at T N(Ru) ~ 122 and 180 K, respectively, thus, TN ? Tc, a trend which is contrary to that obtained in “magnetic‐SC” intermetallic systems. Mössbauer spectroscopy (MS) on 0.5% 57Fe doped samples shows that all Fe ions reside in the Ru site which is magnetically ordered, whereas SC is confined to the CuO2 planes. On the other hand, for Y1.5Ce0.5FeSr2Cu2O9 (YCeFSCO) no SC is found and the Cu–O planes order AFM at T N(Cu)=31 K. MS studies reveal two in equivalent Fe sites, and that Fe resides predominantly (60%) in the Cu(1) site. In both sites, the Fe does not order magnetically, and the low T N(Cu) obtained is due to frustration of the Cu moments by the presence of Fe. T N is sensitive to oxygen concentration and shifts toward 260 K when oxygen is depleted.  相似文献   

3.
We have measured the critical temperature (Tc) and the upper critical magnetic field (Hc2) of La1-xGdxRu2. At low concentrations of the magnetic impurity (Gd), the suppression of Tc follows the expected Abrikosov-Gorkov (A-G) pair breaking curve. However, for larger concentrations, strong deviations below A-G are observed. Samples in this region (4. ? × ? 5. at. %) exhibit two Tc's. La1-xGdxRu2 is known to order magnetically, probably as a spin glass, and the magnetic ordering temperature (TM) has been measured in the normal state. This TM curve intersects the Tc curve in the concentration range where the Tc curve is re-entrant and we therefore attribute the re-entrant Tc behavior to the magnetic ordering of the Gd3+ ions.  相似文献   

4.
NMR experiments on high-T c oxides done at Tokyo Metropolitan University are reviewed. The first is89Y NMR in YBCO with Y site dilutely substituted by Gd ions. The second isT 2 t-1 of63,65Cu NQR in YBCO. The third is1H NMR from probe material coated on YBCO and BSCCO.  相似文献   

5.
Mössbauer studies of57Fe in RBa2?y K y (Cu1?x Fe x )3Oz, with R=Y and Pr;y=0 and 0.5;x=0.01, 0.05 and 0.1 andz between 5.9 and 7.1, have been performed. A minority of the iron ions enter the Cu(2) site and reveal its magnetic order. In nonsuperconducting YBa1.5K0.5(Cu0.95Fe0.05)3O6.1 two distinctly inequivalent magnetic iron sites are observed, probably corresponding to iron in the Cu(2) site with different Ba?K neighbours. In superconducting (T c =60 K) YBa1.5K0.5(Cu0.95Fe0.05)3O6.5 one Cu(2) subsite remains magnetic (T N=440 K). The implications of these findings on the valencies of the Cu ions are discussed.  相似文献   

6.
The spin valve effect for the superconducting current based on the superconductor/ferromagnet proximity effect has been studied for a CoO x /Fe1/Cu/Fe2/Cu/Pb multilayer. The magnitude of the effect ΔT c = T c AP ? T c P , where T c P and T c AP are the superconducting transition temperatures for the parallel (P) and antiparallel (AP) orientation of magnetizations, respectively, has been measured for different thicknesses of the Fe1 layer d Fe1. The obtained dependence of the effect on d Fe1 reveals that ΔT c can be increased in comparison with the case of a half-infinite Fe1 layer considered by the previous theory. A maximum of the spin valve effect occurs at d Fe1d Fe2. At the optimal value of d Fe1 almost full switching from the normal to the superconducting state when changing the mutual orientation of magnetizations of the iron layers Fe1 and Fe2 from P to AP is demonstrated.  相似文献   

7.
Nuclear relaxation of 63Cu in the superconducting state of the Kondo-lattice system CeCu2Si2 has been studied with the use of the 63Cu nuclear quadrupole resonance technique under zero field and down to 65mK. The nuclear spin-lattice relaxation rate (1/T1) decreases drastically just below Tc=0.67 K down to 0.5Tc without the apparent enchanced behavior and then is found to be almost temperature independent below 0.3Tc. These results suggest that the superconductivity in CeCu2Si2 is not in the usual BCS regime. The analysis based upon the existing triplet pairing model with an anisotropic energy gap describes well the behavior from Tc down to 0.5Tc, while the temperature independence below 0.3Tc remains unexplained.  相似文献   

8.
XPS and UPS photoemission experiments on the highT c superconductors (T c ≈90 K) with nominal composition YBa2Cu3O9-y (y≈2) show the following:
  1. The density of electronic states at the Fermi energy is very small, much smaller than in pure Cu.
  2. The Cu 2p spectra show only a Cu2+ contribution.
  3. The Ba core levels show a structure with two components of nearly equal magnitude, which leads to the suggestion that these compounds have large O2? vacancies coordinated to Ba2+ sites.
  4. Annealing at 400°C under UHV conditions leads possibly to a partial reduction of Cu2+ to lower Cu valence states and to a small increase of the O2? vacancy component of the Ba2+ line.
  相似文献   

9.
We summarize previous field effect studies in high-T c cuprates and then discuss our method to smoothly tune the carrier concentration of a cuprate film over a wide range using an applied electric field. We synthesized epitaxial one-unit-cell thick films of La2?x Sr x CuO4 and from them fabricated electric double layer transistor devices utilizing various gate electrolytes. We were able to vary the carrier density by about 0.08 carriers per Cu atom, with the resulting change in T c of 30 K. The superconductor-insulator transition occurred at the critical resistance very close to the quantum resistance for pairs, R Q = h/(2e)2 = 6.5 kΩ. This is suggestive of a quantum phase transition, possibly driven by quantum phase fluctuations, between a “Bose insulator” and a high-T c superconductor state.  相似文献   

10.
11.
We develop quantum theory of nonresonant ultrasonic and electromagnetic absorption in glasses at low temperatures. In the quantum region where ?ω?kT the nonresonant absorption coefficients are proportional to ω3 which seems to be in agreement with the existing experimental data.The existence of characteristic temperature Tc (or characteristic energy Ec = kTc) of the order of 10 + 20 K is established. At higher interlevel spacing E the concept of two-level systems in their conventional form is not applicable because of their strong coupling to the phonons. Neither the perturbation theory is applicable for calculation of absorption in the frequency interval ?ω?c or at temperature interval T?Tc = Ec/k.  相似文献   

12.
We investigate a kind of spin-Peierls transition (SP) in high Tc superconductivity. It is found the antiferromagnetic exchange integral of SP corresponds to the magnetic resonance peak. The kind of spin-Peierls transition applied to cuprate superconductors is that without dimerization of lattice ions and with dimerization of localized hole hCu attached to the ion. Absence of the magnetic resonance peak in La-Sr-Cu-O results from the dimerized state of localized hole, hCu below Tc into tetramerized phase above Tc in SP transition without dimerization of copper-ion. The checkerboard patterns with four unit cell period originate from the SP of electronic part without ion-dimerization and from charge occupation probability of oxygen-atom around Cu.  相似文献   

13.
The MgB2 coated superconducting tapes have been fabricated on textured Cu (0 0 1) and polycrystalline Hastelloy tapes using coated conductor technique, which has been developed for the second generation high temperature superconducting wires. The MgB2/Cu tapes were fabricated over a wide temperature range of 460-520 °C by using hybrid physical-chemical vapor deposition (HPCVD) technique. The tapes exhibited the critical temperatures (Tc) ranging between 36 and 38 K with superconducting transition width (ΔTc) of about 0.3-0.6 K. The highest critical current density (Jc) of 1.34 × 105 A/cm2 at 5 K under 3 T is obtained for the MgB2/Cu tape grown at 460 °C. To further improve the flux pinning property of MgB2 tapes, SiC is coated as an impurity layer on the Cu tape. In contrast to pure MgB2/Cu tapes, the MgB2 on SiC-coated Cu tapes exhibited opposite trend in the dependence of Jc with growth temperature. The improved flux pinning by the additional defects created by SiC-impurity layer along with the MgB2 grain boundaries lead to strong improvement in Jc for the MgB2/SiC/Cu tapes. The MgB2/Hastelloy superconducting tapes fabricated at a temperature of 520 °C showed the critical temperatures ranging between 38.5 and 39.6 K. We obtained much higher Jc values over the wide field range for MgB2/Hastelloy tapes than the previously reported data on other metallic substrates, such as Cu, SS, and Nb. The Jc values of Jc(20 K, 0 T) ∼5.8 × 106 A/cm2 and Jc(20 K, 1.5 T) ∼2.4 × 105 A/cm2 is obtained for the 2-μm-thick MgB2/Hastelloy tape. This paper will review the merits of coated conductor approach along with the HPCVD technique to fabricate MgB2 conductors with high Tc and Jc values which are useful for large scale applications.  相似文献   

14.
We report measurements of the low-field complex magnetic susceptibility on Pt1?x Mn x forx=0.01, 0.025 and 0.05 and for frequencies ν between 10 and 4,000 Hz. A strong frequency dependence of the freezing temperatureT f is observed: ΔT f /T f Δ lnv=0.025 (decade ν)?1 for all three alloys. These results as well as previous other measurements are interpreted in terms of a phenomenological model.  相似文献   

15.
Ceramic samples of lanthanum strontium manganite perovskites La0.6Sr0.2Mn1.2 ? x Ni x O3 ± ?? (0 ?? x ?? 0.3) have been investigated using the X-ray diffraction, magnetic (??ac), 55Mn NMR, resistive, and magnetoresistive methods. The specific features of the influence of the composition on the structure and properties of nonstoichiometric manganite perovskites have been established. It has been found that the rhombohedrally (R $\bar 3$ c) distorted perovskite structure contains cation and anion vacancies, as well as nanostructured clusters with Mn2+ ions in the A-positions. The substitution of Ni3+ ions (r = 0.74 ?) for Mn3+ ions (r = 0.785 ?) leads to a decrease in the lattice parameter a, the ferromagnetic-paramagnetic phase transition temperature T C, and the metal-semiconductor phase transition temperature T ms due to the disturbance of the superexchange interactions between heterovalent manganese ions Mn3+ and Mn4+. The observed anomalous magnetic hysteresis at 77 K has been explained by the antiferromagnetic effect of the unidirectional exchange anisotropy of the ferromagnetic matrix structure on the magnetic moments of the superstoichiometric manganese Mn2+ ions located in nanostructured planar clusters. An analysis of the asymmetrically broadened 55Mn NMR spectra of the compounds has revealed a high-frequency electronic superexchange of the ions Mn3+ ? O2? ? Mn4+; a local heterogeneity of their surrounding by other ions, vacancies, and clusters; and a partial localization of Mn4+ ions. The local hyperfine interaction fields on 55Mn nuclei have been determined. The concentration dependences of the activation energy and charge hopping frequency have confirmed that the Ni ions decrease the electrical conductivity due to the weakening of the electronic superexchange Mn3+ ? O2? ? Mn4+. Two types of magnetoresistive effects have been found: one effect, which is observed near the phase transition temperatures T C and T ms, is caused by scattering at intracrystalline nanostructured heterogeneities, and the other effect, which is observed in the low-temperature range, is induced by tunneling through intercrystalline mesostructured boundaries. The phase diagram has demonstrated that there is a strong correlation between magnetic and electrical properties in rare-earth manganites.  相似文献   

16.
57Fe and119Sn Mössbauer spectroscopy as well as X-ray diffractometry were used to study Ti?Ca?Ba?Cu?O high Tc superconductors (Tc=106K) in the 4 to 300 K temperature range. X-ray diffractograms showed the dominant phase of these supercondutors to be 2-1-2-2 type. Three main iron sites were found and associalted with Fe in Cu sites in the real crystal. The dopublet with IS=0.25 mm/s and QS=0.7 mm/s at RT was attributed to the regular Cu site. No magnetic splitting was observed either in Sn or in Fe spectra taken even at 4 and 5K.  相似文献   

17.
We have made measurements of the pressure dependence of the superconducting transition temperature, Tc, for In2Bi and related alloys. For In2Bi- phase alloys, a large discontinuity in Tc is seen at 15–20 kbar, which we associate with a phase transformation first seen by Bridgman [1]. Our measurements suggest that this transformation is produced by the decomposition of In2Bi into In5Bi3 and an In-rich phase. In the low pressure phase, Tc shows a minimum at 9–15 kbar whereas it depends linearly on pressure in the high pressure phase with ?Tc/?P equal to -4.9 × 10-5 K bar-1.  相似文献   

18.
NMR and NQR spectra and spin-lattice relaxation measurements carried out in LASCO and YBCO-type crystals are presented and analyzed in order to derive insights on the correlations and spin-dynamics of the Cu2+ ions and on the microscopic mechanisms of high-T c superconductivity. As an illustrative example on how the magnetic correlation length and spin dynamics properties can be extracted from the relaxation rateW, the35Cl NMR data in the two-dimensional Heisenberg system Sr2CuCl2O2, around the paramagnetic-antiferromagnetic (PA-AF) transition are first considered. Then the139La NQR relaxation measurements in La2?xSrxCuO4 are briefly reviewed and it is shown how a simple picture of localized Cu2+ magnetic moments, whose spin fluctuation times are controlled by the charge defects induced by the doping, leads in a direct way to quantitative estimates for the progressive shift, on cooling, of the spectral density of the low-frequency spin excitations towards the high frequency range. This phenomenon can be described in terms of effective spin at the Cu2+ ions, and its similarities with the analogous effect of progressive delocalization in Heavy Fermions systems are pointed out. Thus, the superconducting transition appears to occur in an unconventional Fermi liquid with AF correlations among itinerant pseudoparticles, possibly involving a mechanism not directly related to the magnetic correlated dynamics. In fact, a universal behavior of the relaxation rates as a function of temperature is observed, regardless of the transition temperatureT c. The independence ofT c from the low frequency static and dynamical spin properties is also indicated by89Y Knight shifts and from63Cu relaxation rates in systems like YBa2Cu4O8 (Y124), whereT c can be changed by atomic substitutions and by controlling the oxygen stoichiometry. The effect of an external magnetic field on the correlated spin dynamics of the AF Fermi liquid is investigated and from a comparison of Cu NQR relaxation and NMR relaxation in oriented powder of YBCO and LASCO it is shown that the external field has the small but unambiguous effect of depressing the relaxation rates aboveT c, besides strongly enhancing them in the superconducting phase. A maximum in the ratio \({{W\left( {NQR} \right)} \mathord{\left/ {\vphantom {{W\left( {NQR} \right)} {W\left( {\vec H\left\| {\vec c} \right.} \right)}}} \right. \kern-0em} {W\left( {\vec H\left\| {\vec c} \right.} \right)}}\) is thus observed around 80 K, either in LASCO or in YBCO, again indicating that the transition could be driven by a mechanism not directly involving the spin dynamic properties. To study the role of the fluxions belowT c 89Y NMR shifts and spectra in oriented powders of YBCO are analyzed. Information on the spin susceptibility and on the structure of the vortex lattice is obtained. In addition, from the temperature behavior of the linewidth a motional narrowing related to flux melting is evidenced. The effective correlation time for the vortex motion is derived and it is discussed why μ+SR cannot detect it in view of the different rigid-lattice line broadening.  相似文献   

19.
20.
I. I. Amelin 《JETP Letters》2002,76(3):185-188
Apparently, a two-dimensional CuO lattice is formed on the surface of copper oxide in the CuO-Cu interface. This lattice consists of Cu2+ and O1? ions, which form a narrow, partially filled two-dimensional band. In this case, local electron pairs (LEPs) can form in the oxygen subsystem as a result of the fulfillment of the Shubin-Vonsovskii conditions. A crude estimate of the formation temperature of LEPs gives T* ~ 10 4 K. At the concentration in the interface layer n~1.6×1020 cm?3 and the effective mass of carriers m* ~ m e, the onset temperature of Bose-Einstein condensation may take a value of T c ~ 1000 K. The estimate obtained for the temperature T c corresponds to the experimental value by an order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号