首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The morphology of silicon nanowire (SiNW) layers formed by Ag-assisted electroless etching in HF/H2O2 solution was studied. Prior to the etching, the Ag nanoparticles were deposited on p-type Si(1 0 0) wafers by electroless metal deposition (EMD) in HF/AgNO3 solution at room temperature. The effect of etching temperature and silicon resistivity on the formation process of nanowires was studied. The secondary ion mass spectra (SIMS) technique is used to study the penetration of silver in the etched layers. The morphology of etched layers was investigated by scanning electron microscope (SEM).  相似文献   

2.
Silicon wafers coated with a film of Ag pattern are used for investigating roles of Ag in the fabrication of silicon nanowire arrays (SiNWs) by the electroless chemical etching technique. The diameter of SiNWs grown in the mixed AgNO3/HF solution ranges from 20 to 250?nm. A growth mechanism for such obtained SiNWs is proposed and further experimentally verified. As a comparison as well as to better understand this chemical process, another popular topic on growing SiNWs in the H2O2/HF solution is also studied. Originating from different chemical reaction mechanisms, Ag film could protect the underneath Si in the AgNO3/HF solution and it could, on the contrary, accelerate etching of the underneath Si in the H2O2/HF solution.  相似文献   

3.
In order to understand the optical loss mechanisms in porous silicon based waveguides, structural and optical studies have been performed. Scanning and transmission electron microscopic observations of porous silicon layers are obtained before and after an oxidation process at high temperature in wet O2. Pore size and shape of heavily p-type doped Si wafers are estimated and correlated to the optical properties of the material before and after oxidation. The refractive index was measured and compared to that determined by the Bruggeman model.  相似文献   

4.
Processes for making nanoporous SiO2 layers on Si via the irradiation of thermally oxidized silicon wafers with fast ions followed by chemical treatment in a solution or vapor of hydrofluoric acid are presented. It is shown that the density, shape, diameter, and length-to-diameter ratio of channels etched in silicon dioxide can be controlled by varying the regimes of fast ion irradiation or chemical treatment of SiO2/Si structures. Track parameters calculated using the thermal spike model are compared with the chemical etching data.  相似文献   

5.
This very paper is focusing on the preparation of silica nano-wires via annealing porous silicon wafer at 1200 °C in H2 atmosphere and without the assistant metal catalysts. X-ray diffraction, X-ray energy dispersion spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy and selected area diffraction technology have been employed for characterizing the structures, the morphology and the chemical components of the nano-wires prepared, respectively. It is found that the diameter and the length of the nano-wires were about 100 nm and tens micron, respectively. Meanwhile, it is also necessary to be pointed out that silica NWs only formed in the cracks of porous wafers, where the stress induced both by the electro-chemical etching procedure for the porous silicon preparation and nanowires growth procedure is believed to be lower than that at the center of the island. Therefore, a stress-driven mechanism for the NWs growth model is proposed to explain these findings.  相似文献   

6.
It was demonstrated that the etching in HF-based aqueous solution containing AgNO3 and Na2S2O8 as oxidizing agents or by Au-assisted electroless etching in HF/H2O2 solution at 50 °C yields films composed of aligned Si nanowire (SiNW). SiNW of diameters ∼10 nm were formed. The morphology and the photoluminescence (PL) of the etched layer as a function of etching solution composition were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence. It was demonstrated that the morphology and the photoluminescence of the etched layers strongly depends on the type of etching solution. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

7.
An experimental apparatus and method for investigating elastic and inelastic backscattering (180°) of low-energy (0–8 eV) monoenergetic electrons by a solid surface are described and the first results are presented for the reflection of electrons by samples of pure single-crystalline silicon with a polished surface (Si), doped p-type single-crystalline silicon with a porous surface (Si-p) as well as H2O and H2O2 passivated porous samples, Si-p + H2O and Si-p + H2O2. A structure due to the excitation of surface plasmons has been observed for the first time in the loss spectra. Features corresponding to a resonance excited state of molecular nitrogen adsorbed on the surface of porous silicon have been observed in the constant residual energy spectra. Zh. Tekh. Fiz. 67, 103–108 (May 1997)  相似文献   

8.
Based on synchrotron research of the fine structure main parameters of SiL 2, 3 X-ray absorption edges (X-ray absorption near edge structure (XANES)) in porous silicon on boron-doped Si(100) wafers, the thickness of the surface oxide layer and the degree of distortions of the silicon-oxygen tetrahedron in this layer were estimated. The thickness of the oxide layer formed on the amorphous layer coating nanocrystals of porous silicon exceeds the thickness of the native oxide on the surface of Si(100) : P and Si(100) : B single-crystal (100) silicon wafers by several times. Distortion of the silicon-oxygen tetrahedron, i.e., the basic unit of silicon oxide, is accompanied by Si-O bond stretching and an increase in the angle between Si-O-Si bonds.  相似文献   

9.
We measure surface recombination velocities (SRVs) below 10 cm/s on p‐type crystalline silicon wafers passivated by atomic–layer–deposited (ALD) aluminium oxide (Al2O3) films of thickness ≥10 nm. For films thinner than 10 nm the SRV increases with decreasing Al2O3 thickness. For ultrathin Al2O3 layers of 3.6 nm we still attain a SRV < 22 cm/s on 1.5 Ω cm p‐Si and an exceptionally low SRV of 1.8 cm/s on high‐resistivity (200 Ω cm) p‐Si. Ultrathin Al2O3 films are particularly relevant for the implementation into solar cells, as the deposition rate of the ALD process is extremely low compared to the frequently used plasma‐enhanced chemical vapour deposition of silicon nitride (SiNx). Our experiments on silicon wafers passivated with stacks composed of ultrathin Al2O3 and SiNx show that a substantially improved thermal stability during high‐temperature firing at 830 °C is obtained for the Al2O3/SiNx stacks compared to the single‐layer Al2O3 passivation. Al2O3/SiNx stacks are hence ideally suited for the implementation into industrial‐type silicon solar cells where the metal contacts are made by screen‐printing and high‐temperature firing of metal pastes. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The black silicon has been produced by plasma immersion ion implantation (PIII) process. The microstructure and optical reflectance are characterized by field emission scanning electron microscope and spectrophotometer. Results show that the black silicon appears porous or needle-like microstructure with the average reflectance of 4.87% and 2.12%, respectively. The surface state is investigated by X-ray photoelectron spectroscopy (XPS) technique. The surface of the black silicon is composed of silicon, carbon, oxygen and fluorine element. The formation of SixOyFz in the surface of black silicon can be proved clearly by the O 1s, F 1s and Si 2p XPS spectra. The formation mechanism of the black silicon produced by PIII process can be obtained from XPS results. The porous or needle-like structure of the black silicon will be formed under the competition of SFx+ (x  5) and F+ ions etching effect, SixOyFz passivation and ion bombardment.  相似文献   

11.
A novel electroless method of producing porous silicon carbide (PSiC) is presented. Unlike anodic methods of producing PSiC, the electroless process does not require electrical contact during etching. Rather, platinum metal deposited on the wafer before etching serves as a catalyst for the reduction of a chemical oxidant, which combined with UV illumination injects holes into the valence band, the holes subsequently participating in the oxidation and dissolution of the substrate. The etchant is composed of HF and K2S2O8 in water. Various porous morphologies are presented as a function of etchant concentration, time of etching, and SiC polytype. Wafer quality is of the utmost concern when utilizing the electroless wet etchant, since defects such as stacking faults, dislocations, and micropipes have a large impact on the resulting porous structure. Results of imaging and spectroscopic characterization indicate that the porous morphologies produced in this manner should be useful in producing sensors and porous substrates for overgrowth of low dislocation density epitaxial material.  相似文献   

12.
利用机械-化学方法同时实现硅表面的图形化和功能化. 在芳香烃重氮盐(C6H5N2BF4)中用金刚石刀具刻划单晶硅(100),使单晶硅表面的Si-O键断裂,形成硅的自由基,进而它们与溶液中含有的有机分子共价结合以形成自组装单层膜. 用原子力显微镜对自组装前后的表面形貌进行表征,用飞行时间二次离子质谱和红外光谱对自组装单层膜进行检测和分析,通过确认C6H5离子的存在证明自组装单层  相似文献   

13.
Ag nanoparticles on SiO2/Si surfaces synthesized using the Tollen's reagent and a subsequent acid-etching were characterized using X-ray photoelectron spectroscopy (XPS). Combining the reduction of the Tollen's reagent and the chemical etching, one can create naked Ag nanoparticles with various sizes in the size range below ∼10 nanometers (nm). The reduced particle size by the chemical etching was identified using positive core level shifts with increasing etching time. Ag nanoparticles smaller than ∼3 nm undergo a reversible oxidation and reduction cycle by reacting with H2O2/H2O and a subsequent heating under vacuum to 150 °C, which was not found for the bulk counterparts and larger particles, demonstrating unique chemical properties of nanoparticles compared to the bulk counterparts.  相似文献   

14.
The Au-assisted electroless etching of p-type silicon substrate in HF/H2O2 solution at 50 °C was investigated. The dependence of the crystallographic orientation, the concentration of etching solution and the silicon resistivity on morphology of etched layer was studied. The layers formed on silicon were investigated by scanning electron microscopy (SEM). It was demonstrated that although the deposited Au on silicon is a continuous film, it can produce a layer of silicon nanowires or macropores depending on the used solution concentration.  相似文献   

15.
In the current communication, porous silicon samples were prepared by pulsed photoelectrochemical etching using a hydrofluoric acid-based solution. The structural and gas-sensing properties of the samples were studied. Apart from the cycle time T and pause time Toff of the pulsed current, a novel parameter, in the shape of the current named ‘delay time Td’ was introduced. Our results showed that by optimization of delay time, the porosity of samples can be controlled due to the chemical preparation of silicon surface prior to electrochemical anodization. The fourier-transform infrared measurements of porous silicon (PS) layers on Si substrate showed that the typical PS surface was characterized by chemical species like Si–H and Si–O–Si terminations. The two-minute delay before applying electrical current was considered sufficient for the fabrication of higher porosity (83%), more uniform, and more stable structures. The photoluminescence (PL) peak of the optimized sample showed higher intensity than the other samples. An obvious PL blue shift also revealed a change in the crystallographic characteristics of silicon due to quantum confinement effects. Metal–semiconductor–metal diodes with Schottky contacts of nickel were fabricated on PS samples and the potential application of optimized substrates for the improved sensitivity, stability, response time and recovery time of hydrogen gas sensors was subsequently studied.  相似文献   

16.
Acoustic cavitation is used for megasonic cleaning in the semiconductor industry, especially of wafers with fragile pattern structures. Control of transient cavitation is necessary to achieve high particle removal efficiency (PRE) and low pattern damage (PD). In this study, the cleaning performance of solutions with different concentrations of dissolved gas (H2) and anionic surfactant (sodium dodecyl sulfate, SDS) in DIW (DI water) on silicon (Si) wafers was evaluated in terms of PRE and PD. When only DIW was used, PRE was low and PD was high. An increase in dissolved H2 gas concentration in DIW increased PRE; however, PD also increased accordingly. Thus, we investigated the megasonic cleaning performance of DIW and H2-DIW solutions with various concentrations of the anionic surfactant, SDS. At 20 ppm SDS in DIW, PRE reached a maximum value and then decreased with increasing concentration of SDS. PRE decreased slightly with increasing concentrations of SDS surfactant when dissolved in H2-DIW. Furthermore, PD decreased significantly with increasing concentrations of SDS surfactant in both DIW and H2-DIW cases. A high-speed camera setup was introduced to analyze bubble dynamics under a 0.96 MHz ultrasonic field. Coalescence, agglomeration, and the population of multi-bubbles affected the PRE and PD of silicon wafers differently in the presence of SDS surfactant. We developed a hypothesis to explain the change in bubble characteristics under different chemical environmental conditions.  相似文献   

17.
多孔硅在液体中的两种电致发光光谱   总被引:2,自引:1,他引:1       下载免费PDF全文
p-型硅片上制作的多孔硅在含有强氧化剂的酸液中处于正向偏压时,可先后产生两种不同的电致发光光谱.一种是红光发射,所需的工作电压极小.随着通电时间增加,红光峰位发生蓝移.这种发光可能与量子尺寸效应有关.另一种是红光猝灭之后出现的白光发射,所需的工作电压很高.由于在酸液中红光猝灭之后,多孔层中形成了一连续的SiO2薄层,因此在高电场作用下,热电子注入该薄氧化层,从而导致白光发射 关键词:  相似文献   

18.
Single crystal silicon wafers are widely used as the precursors to prepare silicon nanowires by employing a silver-assisted chemical etching process. In this work, we prepared polycrystalline silicon nanowire arrays by using solar-grade multicrystalline silicon wafers. The chemical composition and bonding on the surface of silicon nanowire arrays were characterized by Fourier Transform Infrared spectroscope, and X-ray photoelectron spectroscope. The photoluminescence spectra of silicon nanowires show red light emissions centered around 700 nm. Due to the passivation effect of Si dangling bonds by concentrated HNO3 aqueous solution, the photoluminescence intensities are improved by 2 times. The influences of surface chemical states on the wettability of silicon nanowire arrays were also studied. We obtained a superhydrophobic surface on the as-etched silicon nanowire arrays without surface modification with any organic low-surface-energy materials, and realized the evolution from superhydrophobicity to superhydrophilicity via surface modifications with HNO3 solutions.  相似文献   

19.
A simple and low cost method to generate single-crystalline, well-aligned silicon nanowires (SiNWs) of large area, using Ag-assisted electroless etching, is presented and the effect of differently sized Ag catalysts on the fabrication of SiNWs arrays is investigated. The experimental results show that the size of the Ag catalysts can be controlled by adjusting the pre-deposition time in the AgNO3/HF solution. The optimum pre-deposition time for the fabrication of a SiNWs array is 3 min (about 162.04 ± 38.53 nm Ag catalyst size). Ag catalysts with smaller sizes were formed in a shorter pre-deposition time (0.5 min), which induced the formation of silicon holes. In contrast, a large amount of Ag dendrites were formed on the silicon substrate, after a longer pre-deposition time (4 min). The existence of these Ag dendrites is disadvantageous to the fabrication of SiNWs. Therefore, a proper pre-deposition time for the Ag catalyst is beneficial to the formation of SiNWs.SiNWs were synthesized in the H2O2/HF solution system for different periods of time, using Ag-assisted electroless etching (pre-deposition of the Ag catalyst for 3 min). The length of the SiNWs increases linearly with immersion time. From TEM, SAED and HRTEM analysis, the axial orientation of the SiNWs is identified to be along the [001] direction, which is the same as that of the initial Si wafer. The use of HF may induce Si–Hx bonds onto the SiNW array surface. Overall, the Ag-assisted electroless etching technique has advantages, such as low temperature, operation without the need for high energy and the lack of a need for catalysts or dopants.  相似文献   

20.
低温湿氧氧化提高多孔硅发光的稳定性   总被引:5,自引:0,他引:5       下载免费PDF全文
用低温湿氧氧化方法对多孔硅进行后处理,获得了光致发光强度强、发光稳定的样品,顺磁共振谱表明这种样品表面的悬挂键密度较小,通过对样品红外光谱的测试和分析,指出SiH(O3),SiH(SiO2),SiH2(O2)结构的产生是实验中多孔硅稳定性提高的原因. 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号