首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of the metamaterial that can exhibit negative refraction at two frequency bands is presented. The components of this metamaterial are cut wire pairs and continuous wires. The cut wire pairs structure in our sample can achieve the magnetic resonance at two frequency bands by appropriately designing the cut wire dimension. Through numerical simulation, the transmission property of the proposed dual band negative index metamaterial is investigated and its result shows that with the introduction of continuous wires, the stop bands for cut wire pairs (permeability μ<0) and the frequency band for continuous wires (permittivity ε<0) components would overlap and lead to the appearance of pass bands near the two magnetic resonance frequency bands. Its electromagnetic properties are then retrieved to demonstrate that the dual band left-hand behavior can be obtained in our sample structure. It is believed that our approach will be effective to make this kind of dual band negative refractive metamaterial based on the multiple magnetic resonances work at optical frequency.  相似文献   

2.
Tunable metamaterial operating in terahertz (THz) frequency range based on dielectric cubic particles with deposited conducting resonant strip was investigated. The frequency of the first magnetic type Mie resonance depends on the electric length of the strip. It can be changed under photoexcitation or applied voltage. This method of control was used for a design of tunable double negative metamaterial based on dielectric resonant inclusions and wire medium.  相似文献   

3.
We report on three types of tunable dual-band metamaterial with dual negative refraction in this paper. The three types of metamaterial are composed of ferrite slabs and three different metallic resonators, including split-ring resonators (SRR), Ω-like resonators, and short wire pairs. The ferrite slabs under an applied magnetic bias provide one magnetic resonance frequency band and the three metallic resonators provide another magnetic resonance frequency band, respectively. The continuous wires within the metamaterials provide the negative permittivity in a wide frequency band covering the two magnetic resonance bands. We give the design, analysis and numerical demonstrations of three such types of metamaterial in detail. The effective electromagnetic parameters obtained from the simulated S-parameters indicate that the three types of metamaterial indeed exhibit two negative refraction passbands and the two passbands can also be shifted by changing the magnetic bias. Our results open the way to fabricate tunable dual-band metamaterial cloaks, absorbers, and antennas.  相似文献   

4.
In this paper, we present theoretical and experimental results for the indication of negative refraction in ferromagnetic metallic wire lattice. We have studied microwave transmission through a two dimensional wire lattice made of ferromagnetic metallic wires under the applied static magnetic field. We have found that, the microwave transmission were significantly changed at ferromagnetic resonance frequency region. Thus the magnetic permeability can be tuned by external dc magnetic field. Since the dielectric permittivity of metallic wire lattice is negative and can take a value close to unity then the crystal exhibits negative index of refraction at microwave region under the external magnetic field.  相似文献   

5.
We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic tellurium metamaterial structure are investigated in detail. The linewidth of the structure in the direction of magnetic field W x has effects on the position and strength of the electric resonance and magnetic resonance modes. With appropriately optimizing the geometric dimensions of the designed structure, the proposed tellurium metamaterial structure can provide electric resonance mode and high order magnetic resonance mode in the same frequency band. This would be helpful to analyze and design low-loss negative refraction index metamaterials at the infrared wavelengths.  相似文献   

6.
We review some of the techniques that lead to the effective medium representation of a three-dimensional (3D) periodic metamaterial. We consider a 3D lattice of lead telluride cubic resonators at mid-infrared (MIR) frequencies. Each cubic resonator is modeled with both an electric and a magnetic dipole, through a method called the dual dipole approximation. The electric and magnetic polarizabilities of a cubic resonator are computed via full-wave simulations by mapping the resonator's scattered field under electric/magnetic excitation only to the field radiated by an equivalent electric/magnetic dipole. We then analyze the allowed modes in the lattice, with transverse polarization and complex wavenumber, highlighting the attenuation that each mode experiences after one free space wavelength. We observe the presence of two modes with low attenuation constant, dominant in different frequency ranges, able to propagate inside the lattice: this allows the treatment of the metamaterial as a homogeneous material with effective parameters, evaluated by using various techniques. We then show that the metamaterial under analysis allows for the generation of artificial magnetism (i.e., relative effective permeability different than unity, including negative permeability with low losses) at MIR frequencies.  相似文献   

7.
In this paper, we numerically demonstrate a broadband 3D isotropic negative index metamaterial (NIM) at microwave frequency ranges, which is composed of double periodic array metallic fishnet structure (FS) etched on the six sides of a cubic dielectric substrate. The electric and magnetic L-C resonance circuit models are constructed to demonstrate the broadband resonance properties of the proposed 3D metamaterial. The finite integration technology (FIT) simulation and standard S parameters retrieval methods are used to calculate and analyze the negative characteristics, isotropy and polarization of the 3D model. The numerical results show that the negative index bandwidth is about 7 GHz and relative bandwidth can be up nearly to 63%, the negative-index pass band is independent of the polarization of incident waves and is almost the same for different oblique incident angles. Thus, the proposed metamaterial is good candidate as a broad-band 3D isotropic NIMs.  相似文献   

8.
We demonstrate an all-optical switching of the magnetic resonance properties associated with a metallic Split Ring Resonator(SRR) array. The periodically spaced elements are fabricated on a high-resistivity silicon wafer and probed by using conventional Terahertz (THz) time-domain spectroscopy. We use a continuous-wave laser diode to generate carriers in the gaps of the SRR elements. Using a sufficient power, this opti- cal excitation can create an effective short gap, which would switch the resonant properties of the metamaterial from that of an SRR array to that of a closed ring resonator array and leads to dramatic changes in the THz transmission. In the present experiment, the optically induced switching is associated with the magnetic reso- nance. However, with appropriate changes in the device structure, this approach can be extended to switch a medium with a negative real index of refraction to a medium with a positive real index of refraction. This opens the way to creat a broad new range of active devices.  相似文献   

9.
手征介质构成的面心立方光子晶体光子带结构计算   总被引:4,自引:0,他引:4       下载免费PDF全文
金崇君  秦柏  杨淼  秦汝虎 《物理学报》1997,46(12):2325-2329
提出通过磁场分量计算手征介质组成的光子晶体光子带结构的平面波法.计算表明:手征介质“球形原子”在介电体中排列所组成的面心立方光子晶体和介电体“球形原子”在手征介质中排列所组成的面心立方光子晶体的光子带结构,均存在截止频率,在该频率以下无传播模存在.并与由电场分量计算的结果作了比较,讨论了出现差异的原因 关键词:  相似文献   

10.
Silicon carbide particles exhibit both electric and magnetic optical resonances, allowing unexplored dielectric metamaterial designs. Experimental extinction spectra and Mie theory calculations of single microscale rod-shaped particles reveal three observable midinfrared resonant modes. Two of the modes are degenerate, with a frequency that can be tuned according to a resonance condition derived within the Letter. The existence of both electric and magnetic resonances may enable a novel negative refractive index metamaterial design.  相似文献   

11.
We propose an artificial three-dimensional material that exhibits a strong resonance in the effective permeability in the visible spectral domain. This material may be implemented in a two-step procedure. First, a metamaterial made of densely packed metallic nanoparticles is fabricated that shows a Lorentz-type resonance in the permittivity at the collective plasmon frequency. Second, spheres are formed out of this material and arranged in a cubic lattice. This meta-metamaterial exhibits a strong resonance in the permeability which is caused by a Mie resonance associated with the magnetic mode of a single metamaterial sphere. Realization of this material based on self-organization in liquid crystals and the limitations of the approach are discussed.  相似文献   

12.
A three dimensional isotropic metamaterial is proposed and theoretically studied, which is composed of excitonic spherical nanoparticles in a dielectric host and exhibits electromagnetic transparency and slow light effects in optical regime. The approach is different from the conventional methods of realizing classical Electromagnetically Induced Transparency (EIT) or plasmon induced transparency effects, which are usually based on the interaction of dark and bright states of the medium plasmonic constituents. Instead, it is based on the Fano-like coupling of Mie resonances in the spherical inclusions, resulting from sharp and strong excitonic resonance of the particles. Using the Extended Maxwell Garnett effective medium approximation for calculating the effective electromagnetic parameters of the proposed metamaterial structure, it is shown that EIT-like effects can be produced, such as steep normal dispersion profiles within narrow transparency windows, resulting in high values of group index of refraction on the order of several thousands and figure of merit values around 10, near the excitonic resonance of the nanoparticle inclusions in UV region.  相似文献   

13.
杨一鸣  王甲富  夏颂  柏鹏  李哲  王军  徐卓  屈绍波 《中国物理 B》2011,20(1):14101-014101
Dipoles with Lorentz-type resonant electromagnetic responses can realise negative effective parameters in their negative resonant region. The electric dipole and magnetic dipole can realise, respectively, negative permittivity and negative permeability, so both the field distribution forms of electric and magnetic dipoles are fundamentals in designing left-handed metamaterial. Based on this principle, this paper studies the field distribution in high-permittivity dielectric materials. The field distributions at different resonant modes are analysed based on the dielectric resonator theory. The origination and influence factors of the electric and magnetic dipoles are confirmed. Numerical simulations indicate that by combining dielectric cubes with different sizes, the electric resonance frequency and magnetic resonance frequency can be superposed. Finally, experiments are carried out to verify the feasibility of all-dielectric left-handed metamaterial composed by this means.  相似文献   

14.
金崇君  秦柏 《光学学报》1998,18(1):18-123
发展了适于计算由手征材料组成的光子晶体的光子带结构的平面波法。在此基础上,研究了由手征材料组成的简立方光子晶体的光子带结构。计算表明:手征材料“球形原子”在电介质中排列所组成的科立方光子晶体和电介质“球形原子”在手征材料中排列所组成的简立方光子晶体,不仅都存在光子带隙,而且存在截止频率,在该频率以下的区域无传播模存在,本语文认了这种光子晶体的潜在应用。  相似文献   

15.
Metamaterials and plasmonics as a new pioneering field in photonics joins the features of photonics and electronics by coupling photons to conduction electrons of a metal as surface plasmons (SP). This concept has been implemented for a variety of applications including negative index of refraction, magnetism at visible frequency, cloaking devices amongst others. In the present work, we used plasmonic hybrid material in order to design and fabricate a broad-band perfect plasmonic metamaterial absorber in a stack of metal and Copper-PTFE (Polytetrafluoroethylene) nanocomposite showing an average absorbance of 97.5?% in the whole visible spectrum. Our experimental results showed that the absorption peak of the stacks can be tuned upon varying the thickness and type of the spacer layer due to the sensitivity of plasmon resonance to its environment. To the best of our knowledge, this is the first report of a plasmonic metamaterial absorber based on copper with absorption around 100?% in the entire visible and near-Infrared (NIR).  相似文献   

16.
在金属板与电介质材料板基底间插入色散特异材料板形成三明治结构,并对其Casimir作用力进行了研究.基于Casimir-Lifshitz理论,通过麦克斯韦应力张量计算了真空涨落的辐射压,并对三明治结构利用电磁模式传输矩阵方法进行了数值计算分析.计算结果表明,原本两板结构中存在的Casimir吸引力,在插入特异材料板后的三明治结构中将转变为斥力,从而使轻薄的金属板产生量子悬浮效应。讨论了特异材料板的色散电磁响应特性以及电介质板基底的影响,结果表明特异材料磁等离子频率越大、磁共振频率越小以及电介质板基底的介电常数越小时,三明治结构中获得的斥力越大.此外,板间距增加到一定范围时,三明治结构中将出现Casimir平衡回复力.特异材料填充因子越小、三明治结构中层距和层厚越大时,三明治结构间的回复力会出现在较长距的位置.三明治结构中的量子悬浮效应与平衡回复力可保证微纳米机械系统稳定性,展现出基于真空辐射压的应用前景.  相似文献   

17.
In this work we theoretically investigate a possibility to use cubic nitride based multi-layer periodic nanostructure as a semiconductor metamaterial. The structure design is based on an active region of a quantum cascade laser optimized to achieve optical gain in the Terahertz (THz) spectral range. In particular, we test the GaN/AlGaN quantum well configurations, which should exhibit important advantages compared to GaAs-based structures, namely room temperature operation without the assistance of magnetic field and lower doping densities. Our numerical rate-equations model is solved self-consistently and it takes into account electron-longitudinal optical phonon scattering between all the relevant states among the adjacent periods of the structure. A global optimization routine, specifically genetic algorithm is then used to generate new gain-optimized structures. This work confirms the advantages of cubic GaN designs over GaAs ones, namely feasibility of negative refraction at room temperature without the assistance of magnetic field while keeping the doping densities of the same order of magnitude.  相似文献   

18.
We introduce a metamaterial design composed of square plasmonic loops loaded by Kerr nonlinearities that combines enhanced nonlinear response with strong artificial magnetism, ensuring a negative refractive index with bistable and self-tunable response. We verify with full-wave simulations that positive-to-negative switching of refractive index may be obtained with moderate loss. The design of a finite-size metamaterial prism is also presented, supporting at the same frequency, and for the same light intensity, positive or inverted Snell refraction as a function of its previous excitation history.  相似文献   

19.
Two types of optical metamaterials operating at near-IR and mid-IR frequencies, respectively, have been designed, fabricated by nanoimprint lithography (NIL), and characterized by laser spectroscopic ellipsometry. The structure for the near-IR range was a metal/dielectric/metal stack “fishnet” structure that demonstrated negative permittivity and permeability in the same frequency region and hence exhibited a negative refractive index at a wavelength near 1.7 μm. In the mid-IR range, the metamaterial was an ordered array of fourfold symmetric L-shaped resonators (LSRs) that showed both a dipole plasmon resonance resulting in negative permittivity and a magnetic resonance with negative permeability near wavelengths of 3.7 μm and 5.25 μm, respectively. The optical properties of both metamaterials are in agreement with theoretical predictions. This work demonstrates the feasibility of designing various optical negative-index metamaterials and fabricating them using the nanoimprint lithography as a low-cost, high-throughput fabrication approach. PACS 42.25.Bs; 81.16.Nd; 42.70.-a; 81.07.-b  相似文献   

20.
We report an alternative method of designing a new metamaterial with left handed (LH) characteristics over multi-band (MB) frequencies at microwave frequency regime. The resultant LH metamaterial (LHM) consisting of a single-sided tree-shaped fractal structure features triple magnetic resonances and one electric resonance apart from the lower metal plasma response, which is responsible for the three bands of negative refraction. The multi-resonant mechanism has been systematically studied to account for all electromagnetic behaviors, and capacitor–inductor circuit models are put forward for quantitative analysis. The LHM is balanced in the fundamental passband when only one layer is utilized, whereas the balanced condition is slightly broken when a collection of sub-wavelength cells are cascaded. The negative-zero-positive refraction of the fundamental LH band and the negative refraction of the higher LH band have been numerically validated by a prism-like LHM. For demonstration, a three-layer LHM slab sample is fabricated and measured. Consistent numerical and experimental results are observed. The method not requiring individual resonant particles and electrically continuous wires paves the way for a new route to compact MB LHM design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号