首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Highly charged sodium clusters produced in collisions between neutral clusters and multiply charged ions are formed within a large range of temperatures and fissilities, and identified by means of a high-resolution reflectron-type time-of-flight mass spectrometer ( m/m 14000). The limit of stability of these charged clusters is experimentally investigated, and the time-of-flight spectra are compared with theoretical spectra based on Monte-Carlo simulations. The results indicate that the maximum fissility (X) of stable clusters is approaching the Rayleigh limit (X = 1) for larger clusters sizes. It is mainly limited by the initial neutral cluster temperature ( T 100 K) and the energy transfer in the ionizing collision. In addition, the comparison between the measured and simulated spectra suggests for high cluster charges a multi-fragmentation process, in which most of charge is emitted, creating low charged residual cluster ions.  相似文献   

2.
A. Topacli 《光谱学快报》2013,46(5):729-735
The Ni and new Cd and Co complexes of sulfadimethoxine (SDMX) are prepared and investigated their structural changes and stability by heating at different temperatures. The investigations were earned out by means of the infrared spectroscopy (IR) after heating the samples at several temperatures in the range 50-300 °C for an hour. The IR spectra of the heated samples at different temperatures have been compared with those at room temperature. The changes in the fundamental vibrational bands in their IR spectra gave the temperature values at which the samples decomposited. As a result, it is found that the stability of the complexes are higher than SDMX and their stability is in the order Ni > Co> Cd which depends on the second ionization potential of the metals.  相似文献   

3.
The processes of cluster formation in liquid alcohols, water, methanol, n-hexanol, and n-hexane have been investigated by the method of flicker-noise spectroscopy. Two types of clusters — clusters with a close-packed structure and clusters with a loose structure — have been detected. The energy of formation of different clusters in methanol and n-hexane ranges, respectively, from −250 to +250 J/mole and from −50 to +50 J/mole. The smallest clusters of methanol, n-hexanol, water, and n-hexane consist, respectively, of six, two, eleven, and two molecules, and their largest clusters represent oscillators consisting, respectively, of 50,400, 17,200, 93,500, and 33,150 molecules at 274 K. In methanol at 271 K, more than 44 types of clusters consisting of 6, 97, 152, 219, 297, 492, 1029, 1368, 1560, etc. molecules were detected. In n-hexanol at 273 K, 57 types of clusters were detected. Models of small clusters are proposed. In water, the content of close-packed clusters is maximum at 277 K. The energy of formation/decomposition of small clusters in water ranges from −0.4 to +0.4 kJ/mole and increases with increase in the water temperature. The hysteresis of transformation of the (H2O)280 cluster in the process of heating and cooling of water in the temperature range 273–280 K was detected. Series of energy spectra of clusters in liquids at different temperatures are presented and discussed. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 3, pp. 305–312, May–June, 2005.  相似文献   

4.
The optical absorption spectra of the three most stable structural isomers of the Ag11 cluster were calculated using the time-dependent density functional theory within the Casida formalism. The slightly different spectra of the isomers may permit the identification of the ground-state configuration predominantly present in the laboratory beams based on a direct comparison between the calculated photoabsorption response for the Ag11 isomers and the measured spectra of medium-size silver clusters trapped in noble gas Ar and Ne matrices at different temperatures. This assignment is confirmed by the fact that this isomer has the lowest calculated energy.  相似文献   

5.
We have employed ab initio molecular dynamics to investigate the stability of the smallest gold cages, namely Au16 and Au17, at finite temperatures. First, we obtain the ground state structure along with at least 50 distinct isomers for both the clusters. This is followed by the finite temperature simulations of these clusters. Each cluster is maintained at 12 different temperatures for a time period of at least 150 ps. Thus, the total simulation time is of the order of 2.4 ns for each cluster. We observe that the cages are stable at least up to 850 K. Although both clusters melt around the same temperature, i.e. around 900 K, Au17 shows a peak in the heat capacity curve in contrast to the broad peak seen for Au16.   相似文献   

6.
<正>This paper studies the structural evolution of(AgCo)201 clusters with different Co concentrations under various temperature conditions by using molecular dynamics with the embedded atom method.The most stable position for Co atoms in the cluster is the subsurface layer at low temperature(lower than 200 K for the Ag200Co1 cluster).The position changes to the core layer with the increase of temperature,but there is an energy barrier in the middle layer. This makes the Ag-Co cluster form an Ag-Co-Ag three-shell onion-like configuration.When the temperature is high enough[higher than 800 K for(AgCo)201 clusters with 50%Co],Co atoms can obtain enough energy to overcome the energy barrier and the cluster forms an Ag-Co core-shell configuration.Amorphization for the onion-like and core-shell clusters is induced by the large lattice misfit at Ag-Co interfaces.The structural evolution in the Ag-Co cluster is related to the release of excess energy.  相似文献   

7.
A small Ir cluster can assume either a one-dimensional linear-chain structure or a two-dimensional island-like structure. We present a study of the energetics of the 1 D to 2 D structure transformation of three-atom Ir clusters on the Ir(111) and (001) surfaces. On the (111) plane, the temperature dependence of the ratio of the probabilities of observing a three-atom cluster in the 1 D and 2 D structures exhibits a simple linear Arrhenius behavior. The 2 D island structure is found to be more stable with the cluster binding energy lower by 0.098±0.004 eV. On the (001) plane, the 1 D chain structure is more stable with the cluster binding energy lower by 0.335±0.015 eV. From these energies, the relative pair interaction at three different bond lengths can be derived. The relative pair potential is found to be non-monotonic in distance dependence. We explain the (1×5) reconstruction of the Ir(001) surface as being caused by the large difference in the pair binding energy of the first and second nearest-neighbor bonds. In addition, we find a significant deviation from the simple linear Arrhenius behavior at low temperatures for the three-atom Ir cluster on the Ir (001) plane, indicating that the entropy factor is temperature dependent.  相似文献   

8.
Monte Carlo simulations with second-moment approximation of tight-binding potential were applied to study the sintering dynamics and thermal stability for novel configurations of Ag clusters. Simulations under elevated temperatures utilizing various configurations indicated that sintering processes were strongly affected by temperature and initial design configurations. Ag clusters re-aligned themselves at the onset of sintering, forming clear necks of varying stabilities and different matter diffusion routes between clusters due to differences in initial design configurations. Notably, different Ag cluster design configurations displayed variable melting temperatures. The methodical simulation of design configurations can elucidate strategies to maintain desirable nanocluster structure during sintering processes.  相似文献   

9.
Molecular dynamics simulation (MD) with Sutton-Chen potential for palladium-palladium, nickel-nickel and palladium-nickel interactions has been used to generate the minimum energy structures and to study the thermodynamic and dynamic properties of mixed transition metal cluster motifs of Ni n Pd(13?n) for n ≤ 13. Thirteen particle icosahedral clusters of neat palladium and nickel atoms were first reproduced accordingly with the results in literature. Then in the palladium icosahedra, each palladium atom has been successively replaced by nickel atom. Calculation is repeated for both palladium-centered and nickel-centered clusters. It is found that the nickel-centered clusters are more stable than the palladium-centered clusters and cohesive energy increases along the palladium end to nickel end. Phase transition of each cluster from one end-species to the other end-species is studied by means of caloric curve, root mean square bond fluctuation and heat capacity. Trend in variation of melting temperature is opposite to the energy trend. Palladium-centered cluster shows a premelting at low temperature due to the solid-solid structural transition. Species-centric order parameters developed by Hewage and Amar is used to understand the dynamic behavior in the solid-solid transition of palladium-centered cluster to more stable nickel-centered cluster (premelting). This species-centric order parameter calculation further confirmed the stability of nickel-centered species over those of palladium-centered species and solid-solid structural transition at low temperature.  相似文献   

10.
Hydrogen clusters are formed by packing H2 molecules. A structural characterization of (H2)N clusters up to N=35 has been carried out at zero temperature by using density functional theory. The binding between the hydrogen molecules is very weak and the cluster growth reminds that of the inert gas clusters. An icosahedron is obtained for (H2)13. For clusters larger than (H2)13 several growth models have been compared. The binding energy indicates specially stable clusters for some particular sizes. The magic numbers can be related to Raman spectroscopy experiments, where the intensity of the Raman signal serves to assign enhanced abundance to clusters with N≈13,32,55, which coincide with some of the most stable clusters obtained in the present study. In addition, comparison of theory and experiment suggests that clusters with N smaller than 27 are liquid. The photoabsorption spectra have been calculated using time-dependent density functional theory. Those spectra can be interpreted as a widening of the absorption peaks of the H2 molecule due to the various environments experienced by different molecules in the same cluster.  相似文献   

11.
The thermal stability, phases and phase changes of small carbon clusters and fullerenes are investigated by constant energy Molecular Dynamics simulations performed over a wide range of temperatures, i.e., from to above the melting point of graphitic carbon. The covalent bonds between the carbon atoms in the clusters are represented by the many-body Tersoff potential. The zero temperature structural characteristics of the clusters, i.e., the minimum energy structures as well as the isomer hierarchy can be rationalized in terms of the interplay between the strain energy (due to the surface curvature) and the number of dangling bonds in the cluster. Minimization of the strain energy opposes the formation of cage structures whereas minimization of the number of dangling bonds favors it. To obtain a reliable picture of the processes experienced by carbon clusters as a function of temperature, both thermal and dynamical characteristics of the clusters are carefully analyzed. We find that higher excitation temperatures are required for producing structural transformations in the minimum energy structures than in higher lying isomers. We have also been able to unambiguously identify some structural changes of the clusters occurring at temperatures well below the melting-like transition. On the other hand, the melting-like transition is interrupted before completion, i.e., the thermal decomposition of the clusters (evaporation or ejection of or units) occurs, from highly excited configurations, before the clusters have fully developed a liquid-like phase. Comparison with experiments on the thermal decomposition of and a discussion of the possible implications of our results on the growth mechanisms leading to the formation of different carbon structures are included. Received: 25 March 1998 / Received in final form: 30 October 1998  相似文献   

12.
本文采用气相团簇束流沉积法制备了不同铁铬比的铁铬合金密集团簇点阵,研究了团簇点阵中复杂的多相结构和各种耦合效应.当合金中铬含量较大时,在团簇中能够观测到一种晶格失配的类四方结构,这种结构的出现导致了不同铁铬比的合金团簇中交换偏置效应的不同.随着铬的含量增加,合金团簇的交换偏置场减小,而团簇间的偶极相互作用增强.在合金团簇的铁磁-超顺磁转变温度以上,能明显观察到在类四方结构团簇中有更大的残存矫顽力与剩磁.在场冷条件下,对矫顽力和偏置场随温度变化的研究表明含有更多类四方结构的合金团簇有更好的热稳定性和更大的各向异性.  相似文献   

13.
运用卡里普索(CALYPSO)结构预测方法,在杂化密度泛函B3LYP/6-311G+(d)基组水平上,对AlnCl(n=2-14)团簇的几何结构与电子性质进行优化计算,并讨论了团簇的平均结合能、能隙、二阶能量差分、电离能、亲和能以及电子自然布局和极化率。研究结果表明:AlnCl(n=2-14)团簇的基态构型由简单平面几何结构向立体结构演化,形成Cl原子戴帽Aln-1Cl团簇结构;Cl原子的掺杂增大了Aln团簇的平均结合能;二阶能量差分、能隙、电离能、亲和能的变化表明Al7Cl是幻数团簇结构;团簇中的电荷总是由Al原子向Cl原子转移,原子之间的成键作用随着团簇尺寸的增大而增强。  相似文献   

14.
运用卡里普索(CALYPSO)结构预测方法,在杂化密度泛函B3LYP/6-311G+(d)基组水平上,对Al_nCl(n=2-14)团簇的几何结构与电子性质进行优化计算,并讨论了团簇的平均结合能、能隙、二阶能量差分、电离能、亲和能以及电子自然布居和极化率.研究结果表明:Al_nCl(n=2-14)团簇的基态构型由简单平面几何结构向立体结构演化,形成Cl原子戴帽Al_n-1Cl团簇结构;Cl原子的掺杂增大了Al_n团簇的平均结合能;二阶能量差分、能隙、电离能、亲和能的变化表明Al_7Cl是幻数团簇结构;团簇中的电荷总是由Al_原子向Cl原子转移,原子之间的成键作用随着团簇尺寸的增大而增强.  相似文献   

15.
A temperature measurement technique using SF6 molecules as tiny probe thermometers is described, and results are presented, for large (CO2) N van der Waals clusters (with N ≥ 102) in a cluster beam. The SF6 molecules captured by (CO2) N clusters in crossed cluster and molecular beams sublimate (evaporate) after a certain time, carrying information about the cluster velocity and internal temperature. Experiments are performed using detection of these molecules with an uncooled pyroelectric detector and infrared multiphoton excitation. The multiphoton absorption spectra of molecules sublimating from clusters are compared with the IR multiphoton absorption spectra of SF6 in the incoming beam. As a result, the nanoparticle temperature in the (CO2) N cluster beam is estimated as T cl < 150 K. Time-of-flight measurements using a pyroelectric detector and a pulsed CO2 laser are performed to determine the velocity (kinetic energy) of SF6 molecules sublimating from clusters, and the cluster temperature is found to be T cl = 105 ± 15 K. The effects of various factors on the results of nanoparticle temperature measurements are analyzed. The potential use of the proposed technique for vibrational cooling of molecules to low temperatures is discussed.  相似文献   

16.
The structure and binding energy of copper clusters of the size range 70 to 150 were studied by using the embeddedatom method. The stability of the structure of the clusters was studied by calculating the average binding energy per atom, first difference energy and second difference energy of copper cluster. Most of the copper clusters of the size n=70-150 adopt an icosahedral structure. The results show that the trends are in agreement with theoretic prediction for copper clusters. The most stable structures for copper clusters are found at n=77, 90, 95, 131, 139.  相似文献   

17.
The stability of multiply charged sodium clusters Na(q+)(n) (q< or =10) produced in collisions between neutral clusters and multiply charged ions A(z+) ( z = 1 to 28) is experimentally investigated. Multiply charged clusters are formed within a large range of temperatures and fissilities. They are identified by means of a high-resolution reflectron-type time-of-flight mass spectrometer (m/deltam approximately 14 000). The maximum fissility of stable clusters is obtained for z = 28 and is X approximately 0.85+/-0.07, slightly below the Rayleigh limit (X = 1). It is mainly limited by the initial cluster temperature (T approximately 100 K).  相似文献   

18.
采用基于密度泛函理论的BP86/CEP-121G (O原子采用6-311G**基组)方法,对ScnO (n=1—9)团簇的几何结构、能量与稳定性、电子结构性质及其随团簇尺寸的变化趋势进行了研究.随着团簇原子个数的增加,O原子从位于Scn团簇结构的边缘转变为占据团簇的内部位置.O原子的掺入增加了Scn团簇的稳定性,使其能隙升高,并改变了其稳定性及电子结构性质随团簇尺寸变化的规律;含有偶数个Sc原子的氧化物团簇比其周围邻近的含有奇数个Sc原子的氧化物团簇具有相对较高的稳定性.ScnO团簇电离势的理论计算值与实验值符合得较好,而其电子亲和势呈现振荡交替上升的变化趋势;用最大化学硬度规律等方法表征了ScnO氧化物团簇的稳定性和电子结构性质. 关键词nO团簇')" href="#">ScnO团簇 几何结构 电子性质 密度泛函理论  相似文献   

19.
潘正瑛  李融武 《物理学报》1994,43(10):1726-1733
研究了能量为1keV/atom的金原子簇和0.2keV/atom的铝原子簇轰击金薄膜产生的级联碰撞。用分子动力学模拟计算了注入靶后的簇原子能量分布及其随时间的演化。结果表明,在原子簇注入引起的级联碰憧中,簇原子除了将能量传递给靶原子外,尚有可能破加速。簇原子的最高能量可大于它的初始能量;分析了原子簇注入引起的多次碰撞效应,并用经典力学守恒定律计算了一个簇原子发生二次散射后的能量增益,用以解释注入原子的加速机制。 关键词:  相似文献   

20.
利用密度泛函理论B3LYP方法和6-311+G*全电子基组对(Li2F)nM (M=Li, Na, K; n=1, 2)团簇的几何结构进行了优化,确定了它们的基态结构,并对它们的化学稳定性、电子特性和红外光谱进行了理论研究。结果表明:(Li2F)M (M=Li, Na, K)团簇具有相似的双三角基态结构,但是(Li2F)2M的基态结构则完全不同;(Li2F)Li和(Li2F)2Na团簇具有较大的键能和HOMO-LUMO能隙,致使其具有较高的化学稳定性。通过轨道分析发现,这两个稳定团簇的HOMO和LUMO轨道都是由sp杂化而形成了σ键。同时,也发现(Li2F)2K团簇因具有较低的电离势(4.23 eV),可以考虑其为新型的超碱金属化合物。此外,模拟了(Li2F)nM团簇的红外振动特征峰,并对主要谱峰的振动模式进行了指认。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号