首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the authors use the negativity to study the entanglement of electronic spin and thermally induced subband states inside a quasi-one-dimensional Rashba nanowire (of width in the order of 100 nm), to which a perpendicular uniform magnetic field is applied. To be clearer, it is assumed that the nanowire is held at a temperature T, so that all subband excitations, with definite probabilities, are present. The partially transposed density matrix is shown to be block-diagonal whose eigenvalues are readily obtained. It is shown that at least one of the eigenvalues is always negative, so that the system of electronic spin and subbands inside a Rashba nanowire is never separable. Moreover, it is shown that the negativity, at certain temperatures, exhibits maxima. The temperatures at which the entanglement is maximal strongly depend on the magnetic field. The authors further present graphs of negativity, as functions of temperature, for different magnetic fields, indicating how this agent may be used to control the spin-subband entanglement.  相似文献   

2.
The present work is concerned with an analysis of the entanglement between the electronic coherent superpositions of spin states and subbands in a quasi-one-dimensional Rashba nanoloop acted upon by a strong perpendicular magnetic field. We explicitly include the confining potential and the Rashba spin-orbit coupling into the Hamiltonian and then proceed to calculate the von Neumann entropy, a measure of entanglement, as a function of time. An analysis of the von Neumann entropy demonstrates that, as expected, the dynamics of entanglement strongly depends upon the initial state and electronic subband excitations. When the initial state is a pure one formed by a subband excitation and the z-component of spin states, the entanglement exhibits periodic oscillations with local minima (dips). On the other hand, when the initial state is formed by the subband states and a coherent superposition of spin states, the entanglement still periodically oscillates, exhibiting stronger correlations, along with elimination of the dips. Moreover, in the long run, the entanglement for the latter case undergoes the phenomenon of collapse-revivals. This behaviour is absent for the first case of the initial states. We also show that the degree of entanglement strongly depends upon the electronic subband excitations in both cases.  相似文献   

3.
The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals’ in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.  相似文献   

4.
In this article we present the time evolution of the electronic spin and subbands states, of an electron in an anisotropic two dimensional Rashba quantum dot, to which a magnetic field of arbitrary strength is applied. We also explicitly include the confining (gate) effects as a two dimensional anisotropic harmonic oscillator. From the governing Hamiltonian we compute the time evolution of the initial state, leading to spin and subbands averages as functions of time. Our results indicate that the spin, on the average, precesses about the magnetic field, on an ellipse with intrinsic wobbling. The subbands populations, similar to the case of atom-photon interaction, follow the pattern of collapse–revivals.  相似文献   

5.
B Gisi  S Sakiroglu  &#  Sokmen 《中国物理 B》2016,25(1):17103-017103
In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field.  相似文献   

6.
赵正印  王红玲  李明 《物理学报》2016,65(9):97101-097101
正如人们所知, 可以通过电场或者设计非对称的半导体异质结构来调控体系的结构反演不对称性(SIA)和Rashba自旋劈裂. 本文研究了Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中第一子带的Rashba 系数和Rashba自旋劈裂随Al0.3Ga0.7N插入层(右阱)的厚度ws以及外加电场的变化关系, 其中GaN层(左阱)的厚度为40-ws Å. 发现随着ws的增加, 第一子带的Rashba系数和Rashba自旋劈裂首先增加, 然后在ws>20 Å 时它们迅速减小, 但是ws>30 Å时Rashba自旋劈裂减小得更快, 因为此时kf也迅速减小. 阱层对Rashba系数的贡献最大, 界面的贡献次之且随ws变化不是太明显, 垒层的贡献相对比较小. 然后, 我们假ws=20 Å, 发现外加电场可以很大程度上调制该体系的Rashba系数和Rashba自旋劈裂, 当外加电场的方向同极化电场方向相同(相反)时, 它们随着外加电场的增加而增加(减小). 当外加电场从-1.5×108 V·m-1到1.5×108 V· m-1变化时, Rashba系数随着外加电场的改变而近似线性变化, Rashba自旋劈裂先增加得很快, 然后近似线性增加, 最后缓慢增加. 研究结果表明可以通过改变GaN层和Al0.3Ga0.7N层的相对厚度以及外加电场来调节Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba 系数和Rashba自旋劈裂, 这对于设计自旋电子学器件有些启示.  相似文献   

7.
By solving the Schrödinger and Poisson equations self-consistently, changes of the Rashba spin splitting for the Al0.3Ga0.7N/GaN heterostructure under uniaxial strain are calculated, and electrons are found to take up the first two subbands. The additional polarization induced by the uniaxial strain leads to a great enhancement of the built-in electric field and the 2DEG concentration. The Rashba spin splitting almost increases linearly with the uniaxial strain, and its amplitude increases by 36% with a strain of 4×10−3. The effect of electrons occupying more than one subband on the Rashba spin splitting is discussed. Results show the internal electric field caused by the polarization is crucial for the considerable Rashba spin splitting in the Al0.3Ga0.7N/GaN heterostructure and the magnitude of the Rashba spin splitting can be greatly modulated by the uniaxial strain, which would benefit further research and application of spintronics.  相似文献   

8.
We investigate the influence of external electric fields on the spins of a ballistic nanowire in terms of variations of the Rashba parameter and modification of the confinement potential. For a weak Rashba effect, the spins along the confinement direction in a given subband nearly assume full quantization. In the presence of a perpendicular magnetic field, the state of quantization can be manipulated using a transverse electric. This process requires modifications in the spin textures. If an in-plane magnetic field is applied, spins suffer rigid displacement to one edge of the wire and their expectation value becomes independent of the transverse electric field.  相似文献   

9.
Here we have investigated the influence of magnetic field and confinement potential on nonlinear optical property, third harmonic generation (THG) of a parabolically confinement quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of confining potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate that an increase of Rashba spin orbit interaction coefficient produces strong effect on the peak positions of THG. The role of confinement strength and spin orbit interaction strength as control parameters on THG have been demonstrated.  相似文献   

10.
Spin-dependent electronic transport through an open multiple-quantum-dot ring threaded by a magnetic flux is theoretically investigated by using the single particle Green?s function method. By introducing local Rashba spin–orbit interaction on an individual quantum dot and local magnetic moments on two of other quantum dots, we calculate the spin-polarization in the output lead. We find the spin-polarization can be tuned by manipulating magnetic moments, adjusting magnetic flux and setting the Rashba spin–orbit strength. It is also shown the system can operate as an efficient spin-inverter when the structure is adjusted properly. The analysis can be utilized in designing optimized nanodevices.  相似文献   

11.
By employing non-equilibrium Green's function method, the mesoscopic Fano effect modulated by Rashba spin–orbit (SO) coupling and external magnetic field has been elucidated for electron transport through a hybrid system composed of a quantum dot (QD) and an Aharonov–Bohm (AB) ring. The results show that the orientation of the Fano line shape is modulated by the Rashba spin–orbit interaction kRLkRL variation, which reveals that the Fano parameter q will be extended to a complex number, although the system maintains time-reversal symmetry (TRS) under the Rashba SO interaction. Furthermore, it is shown that the modulation of the external magnetic field, which is applied not only inside the frame, but also on the QD, leads to the Fano resonance split due to Zeeman effect, which indicates that the hybrid is an ideal candidate for the spin readout device.  相似文献   

12.
Using the method of the Jordan--Wigner transformation for solving different spin--spin correlation functions, we have investigated the generation of next-nearest-neighbouring entanglement in a one-dimensional quantum Ising spin chain with the Gaussian distribution impurities of exchange couplings and external magnetic fields taken into account. The maximal value of entanglement between the next-nearest-neighbouring qubits in the transverse Ising model was analysed in detail by varying the effectively controlled parameters such as interchange coupling, magnetic field and the system impurity. For such systems, where both exchange couplings and external magnetic field disorder appear, we show that it is possible to achieve next-nearest-neighbouring entanglement better than the previously discussed pure Ising spin chain case. We also show that the Gaussian distribution impurity can induce next-nearest-neighbouring entanglement, which can be used as a means to characterize quantum phase transition.  相似文献   

13.
肖贤波  李小毛  陈宇光 《中国物理 B》2009,18(12):5462-5467
We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin--orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the emitting energy of electrons or the strength of the EM field by adopting the mode matching approach. It is shown that the spin polarization can be manipulated by external parameters when the strength of Rashba SOC is strong. Furthermore, a sharp step structure is found to exist in the total electron conductance. These results can be understood by the nontrivial Rashba subbands intermixing and the electron intersubband transition when a finite-range transversely polarized EM field irradiates a straight waveguide.  相似文献   

14.
The spin Hall current in a two-dimensional electron system with nonuniform Rashba spin–orbit interaction (SOI) is investigated by means of the lattice Green's function method. Large electric and spin Hall currents are produced by this nonuniform Rashba SOI, while the electric Hall current vanishes in the uniform Rashba SOI system. A nondissipative spin Hall current is also produced, without any longitudinal voltage bias, any external magnetic field and any special class of band insulators.  相似文献   

15.
The current-induced spin accumulation is calculated for a 1D lateral semiconductor superlattice with spin–orbit interaction of the Rashba and Dresselhaus type. Due to its particular symmetry, the Rashba interaction alone only leads to an in-plane component of the magnetization transverse to the applied electric field. When in addition a Dresselhaus contribution is present, this symmetry is lifted, and all components of the magnetization are induced by the electric field. Based on the density-matrix approach, the induced spin polarization is determined as a function of external in-plane electric and magnetic fields.  相似文献   

16.
Karan Singh  K. Mukherjee 《哲学杂志》2020,100(13):1771-1787
ABSTRACT

In this work, we report the results of DC susceptibility, AC susceptibility and related technique, resistivity, transverse and longitudinal magnetoresistance and heat capacity on polycrystalline magnetic semimetal CeAlGe. This compound undergoes antiferromagnetic type ordering around 5.2 K (T1). Under the application of external magnetic fields, parallel alignment of magnetic moments is favoured above 0.5?T. At low field and temperature, frequency and AC field amplitude response of AC susceptibility indicate the presence of spin–lattice relaxation phenomena. The observation of spin–lattice interaction suggests the presence of the Rashba–Dresselhaus spin–orbit interaction which is associated with inversion and time-reversal symmetry breaking. Additionally, the presence of negative and asymmetric longitudinal magnetoresistance indicates anomalous velocity contribution to the magnetoresistance due to the Rashba–Dresselhaus spin–orbit interaction which is further studied by heat capacity.  相似文献   

17.
We investigate theoretically the spin-dependent electron transport in a Rashba quantum wire with rough edges. The charge and spin conductances are calculated as function of the electron energy and wire length by adopting the spin-resolved lattice Green function method. For a single disordered Rashba wire, it is found that the charge conductance quantization is destroyed by the edge disorder. However, a nonzero spin conductance can be generated and its amplitude can be manipulated by varying the wire length, which is attributed to the broken structure symmetries and the spin-dependent quantum interference induced by the rough boundaries. For a large ensemble of disordered Rashba wires, the average charge conductance decreases monotonically, however, the average spin conductance increases to a maximum value and then decreases, with increasing wire length. Further study shows that the influence of the rough edges on the charge and spin conductances can be eliminated by applying a perpendicular magnetic field to the wire. In addition, a very large magnitude of the spin conductance can be achieved when the electron energy lies between the two thresholds of each pair of subbands. These findings may not only benefit to further apprehend the transport properties of the Rashba low-dimensional systems but also provide some theoretical instructions to the application of spintronics devices.  相似文献   

18.
Isolated graphene cannot be obtained by the known synthesis processes and it should be placed on a substrate. This substrate introduces a new type of spin–orbit interaction known as Rashba coupling. Using the Kubo formalism, the magnetic properties of the system in the linear regime have been investigated. Mainly the effect of non-magnetic substrate on the spin susceptibility is calculated. Results show that the Rashba coupling has a central role in the magnetic response function of the system and it is really remarkable since this type of spin orbit coupling can be effectively controlled by an external gate voltage. Most importantly, it was shown that, in the presence of the Rashba interaction a magnetic phase transition could be observed. This magnetic phase corresponds to a magnetic order of conduction electrons that takes place at some special frequencies of external magnetic field.  相似文献   

19.
研究了两量子比特的海森堡XXX自旋链分别处于x方向和y方向均匀外磁场时系统的纠缠特性,并用负度N来度量。得到纠缠度N的解析表达式,并在此基础上进行数值计算。仔细讨论了磁场B、温度T和自旋耦合系数J对纠缠度N的影响。结果表明:纠缠度N会随着磁场|B|和温度T的增大而减小,但会随着自旋耦合系数J的增大而增大。另外,增大的J还会使临界磁场|Bc|和临界温度Tth变大。所以,我们可以通过调节B、T和J来控制热纠缠,这对固态系统中通过构建和选择参数调整系统的纠缠度具有一定的作用和意义。研究还发现,加在x方向均匀外磁场和加在y方向均匀外磁场对两量子比特的海森堡XXX自旋链的作用效果是一样的。  相似文献   

20.
We investigate the electron spin–orbit interaction anisotropy of pyramidal InAs quantum dots using a fully three-dimensional Hamiltonian. The dependence of the spin–orbit interaction strength on the orientation of externally applied in-plane magnetic fields is consistent with recent experiments, and it can be explained from the interplay between Rashba and Dresselhaus spin–orbit terms in dots with asymmetric confinement. Based on this, we propose manipulating the dot composition and height as efficient means for controlling the spin–orbit anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号