首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using first-principles density functional theory and non-equilibrium Green's function formalism for quantum transport calculation, we have investigated the electronic transport properties of heteronanotubes by joining a zigzag (6,0) carbon nanotube and a zigzag (6,0) boron nitride nanotube with different atomic compositions and joint configurations. Our results show that the atomic composition and joint configuration affect strongly the electronic transport properties. Obvious negative differential resistance behavior and large rectifying behavior are obtained in the heterostructure with certain composition and joint configuration. Moreover, tube length and tube radius can affect strongly the observed NDR and rectifying behaviors. The observed negative differential resistance and rectifying behaviors are explained in terms of the evolution of the transmission spectrum with applied bias combined with molecular projected self-consistent Hamiltonian states analysis.  相似文献   

2.
Using first-principles density functional theory and the non-equilibrium Green’s function formalism, we have studied the electronic transport properties of the dumbbell-like fullerene dimer C131-based molecular junction. Our results show that the current-voltage curve displays an obvious negative differential resistance phenomenon in a certain bias voltage range. The negative differential resistance behavior can be understood in terms of the evolution of the transmission spectrum and the projected density of states with applied bias voltage. The present findings could be helpful for the application of the C131 molecule in the field of single molecular devices or nanometer electronics.  相似文献   

3.
We report the observation of negative differential resistance (NDR) in solution synthesized ZnO nanorod. The ZnO nanorod was fabricated as a two terminal planar device using lithographically patterned Au electrodes. The measured current–voltage response of the device has shown a negative differential resistance behavior. The peak-to-valley current ratio of the NDR is found to be greater than 4. The mechanism of this observed NDR effect has been explained based on charge trapping and de-trapping at the nanoscale contacts. It is the first observation of negative differential resistance effect in solution synthesized ZnO nanorod.  相似文献   

4.
Asymmetric exclusion processes with locally reversible kinetic constraints are introduced to investigate the effect of nonconservative driving forces in athermal systems. At high density they generally exhibit rheological-like behavior, negative differential resistance, two-step structural relaxation, dynamical heterogeneity and, possibly, a jamming transition driven by the external field.  相似文献   

5.
Using the fully self-consistent non-equilibrium Green?s function (NEGF) method combined with density functional theory, we investigate numerically the electronic transport property for pristine and doped crossed graphene nanoribbon (GNR) junctions. It is demonstrated that in the case of zigzag interfaces, the IV characteristics of the junction with or without doping always show semiconducting behavior, which is different from that in the case of armchair interfaces [Zhou, Liao, Zhou, Chen, Zhou, Eur. Phys. J. B 76 (2010) 421]. Interestingly, negative differential resistance (NDR) behavior can be clearly observed in a certain bias region for nitrogen-doped shoulder crossed junction. A mechanism for the NDR behavior is suggested.  相似文献   

6.
《Physics letters. A》2014,378(30-31):2217-2221
By applying nonequilibrium Green's function combined with density functional theory, we investigated the electronic transport properties of carbon-doped armchair boron nitride nanoribbons. Obvious negative differential resistance (NDR) behavior with giant peak-to-valley ratio up to the order of 104106 is found by tuning the doping position and concentration. Especially, with the reduction of doping concentration, NDR peak position can enter into mV bias range and even can be expected lower than mV bias. The negative differential resistance behavior is explained by the evolution of the transmission spectra and band structures with applied bias.  相似文献   

7.
Carrying out theoretical calculations using a self-consistent ab initio approach that combines the non-equilibrium Green′s function formalism with density functional theory, we investigate the effect of the center encapsulation of Li atom on the electronic transport properties of C20F20 cage sandwiched between two bulk gold electrodes. The results show that the electrical conductivity of the endohedral complex Li@C20F20 becomes better than that of the empty C20F20 in the bias voltages ranging from 0 to 1.2 V. The novel negative differential resistance behavior in the I-V characteristic curves can be observed by inserting Li atom into C20F20 cage. The mechanism for the negative differential resistance behavior of Li@C20F20 is suggested.  相似文献   

8.
P. Zhao  P.J. Wang  D.S. Liu 《Physics letters. A》2010,374(9):1167-1829
By applying non-equilibrium Green's function formalism combined with first-principles density functional theory, we have investigated the electronic transport properties of a carbon nanotube-based molecular junction with different terminations (H-, C- and N-). The results show that the different terminations at the carbon nanotube ends strongly affect the transport properties of the junction. The current through the N-terminated carbon nanotube junction is significant larger than that through the H- and C-terminated junctions at low biases. Moreover, negative differential resistance behaviors can be observed in the N-terminated carbon nanotube junction, whereas not in the other two cases.  相似文献   

9.
The metal-oxide-semiconductor (MOS) field effect transistor (FET) using ‘oxidized μ c-Si/ultrathin oxide’ gate structure was studied. It was found that this structure shows negative differential resistance behavior, which can be explained by the Coulomb blockade effect of trapped carriers and immediate tunneling into and tunneling out with gate bias variation. The requirements for the device with this structure showing negative differential resistance behavior are based on very weak resistive coupling between floating gate and channel. They are the thinness of the tunnel oxide film, the thickness ratio of the upper oxidized film and the tunnel oxide, and the channel threshold voltage. MOSFET with this gate structure is proposed as a new negative differential resistance device.  相似文献   

10.
辛建国  杨传路  王美山  马晓光 《物理学报》2016,65(7):73102-073102
采用密度泛函理论和非平衡格林函数相结合的方法研究了S原子作为单、双端基的(CH3)2-OPE (齐聚苯乙炔)和(NH2)2-OPE分子在金电极间的电子输运性质. 通过第一性原理优化计算获得分子部分稳定结构, 再置于Au电极之间构成两极系统, 然后再优化整个两极系统获得稳定结构. 另外, 通过非平衡格林函数方法计算了两极系统的电子输运性质. 计算结果表明, 不同的修饰基团和桥接方式可以导致两极系统的开关效应、负微分电阻行为和整流行为等不同的电子输运性质. 通过计算不同偏压下的分子体系投影轨道电子分布、透射谱、态密度, 对这些新异的电输运性质出现的机理进行了解释.  相似文献   

11.
The doped boron (B) atom in silicon carbide nanotube (SiCNT) can substitute carbon or silicon atom, forming two different structures. The transport properties of both B-doped SiCNT structures are investigated by the method combined non-equilibrium Green’s function with density functional theory (DFT). As the bias ranging from 0.8 to 1.0 V, the negative differential resistance (NDR) effect occurs, which is derived from the great difficulty for electrons tunneling from one electrode to another with the increasing of localization of molecular orbital. The high similar transport properties of both B-doped SiCNT indicate that boron is a suitable impurity for fabricating nano-scale SiCNT electronic devices.  相似文献   

12.
By applying non-equilibrium Green?s functions in combination with the density-functional theory, we investigate the transport behavior of molecular devices composed by metal electrode-C60 molecule-metal electrode. Our results show that the electronic transport properties are affected obviously by the different contact distances between the electrodes, and the tunneling current decreases approximately exponentially at a certain bias with the increasing of contact distances. The negative differential resistance is observed and the peak-to-valley ratio can be tuned by different contact distances. The mechanisms of the contact distance effect and the negative differential resistance behavior are proposed.  相似文献   

13.
The spin-dependent transport properties of a porphine molecule linking with two zigzag-edged graphene nanoribbon (ZGNR) electrodes have been investigated by using the density of functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) method. The device shows clearly negative differential resistance (NDR), large tunnelling magnetoresistance (TMR) of 103 magnitude and nearly 100% perfect spin filter efficiency (SFE) properties, respectively. What’s more, the projected density of states (PDOS), molecular projected self-consistent Hamiltonian (MPSH) eigenvalues and transmission eigenstates were carried out to discuss the transport properties of the ZGNR/Porphine/ZGNR nanojunction. These results suggest that the ZGNR/Porphine/ZGNR device is a promising candidate for multi-functional spintronic devices.  相似文献   

14.
We have studied the electronic structures of arsenene nanoribbons with different edge passivations by employing first-principle calculations. Furthermore, the effects of the defect in different positions on the transport properties of arsenene nanoribbons are also investigated. We find that the band structures of arsenene nanoribbons are sensitive to the edge passivation. The current-voltage characteristics of unpassivated and O-passivated zigzag arsenene nanoribbons exhibit a negative differential resistance behavior, while such a peculiar phenomenon has not emerged in the unpassivated and O-passivated armchair arsenene nanoribbons. The vacant defects on both top and bottom edges in unpassivated armchair arsenene nanoribbon can make its current-voltage characteristic also present a negative differential resistance behavior. After expanding the areas of the top and bottom defects in unpassivated armchair arsenene nanoribbon, the peak-to-valley ratio of the negative differential resistance behavior can be enlarged obviously, which opens another way for the application of arsenene-based devices with a high switching ratio.  相似文献   

15.
By applying the nonequilibrium Green?s function formalism combined with density functional theory, we have investigated the electronic transport properties of two nitrogen-doped armchair graphene nanoribbon-based junctions M1 and M2. In the left part of M1 and M2, nitrogen atoms are doped at two edges of the nanoribbon. In the right part, nitrogen atoms are doped at one edge and at the center for M1 and M2, respectively. Obvious rectifying and negative differential resistance behaviors are found, which are strongly dependent on the doping position. The maximum rectification and peak-to-valley ratios are up to the order of 104 in M2.  相似文献   

16.
Using a first-principle density functional theory and non-equilibrium Green's function formalism for quantum transport calculation, we have investigated the electronic transport properties of a new dumbbell-like carbon nanocomposite, in which one carbon nanotube segment is capped with two C60 fullerenes. Our results show that the current–voltage curve reveals a highly nonlinear feature. A negative differential resistance (NDR) behavior is obtained at a very low bias, which is expected to be helpful for the development of low bias NDR-based molecular devices. Moreover, the carbon nanotube length and fullerene type can affect the NDR behavior strongly. The electronic transport is analyzed from the transmission spectra and the molecular projected self-consistent Hamiltonian states under different applied biases.  相似文献   

17.
范志强  谢芳 《物理学报》2012,61(7):77303-077303
利用基于非平衡格林函数和密度泛函理论相结合的第一性原理计算方法,研究了硼氮原子取代掺杂对三并苯分子电子输运性质的影响.计算结果表明,三并苯分子器件的电流在特定偏压区间内随电压的增加而减小呈现出负微分电阻效应,电流的峰谷之比高达5.12.用硼原子或者氮原子取代分子的中心原子后,器件0.8V以内的电流明显增加,但是负微分电阻效应减弱,相应的电流峰谷比分别降至3.83和3.61.分析认为,输运系数在特定偏压下的移动是器件负微分电阻效应的主要成因.核外电子数的差异导致硼氮原子掺杂取代可以使器件轨道及其透射峰分别向高能方向或者低能方向移动从而有效地调控了器件的低偏压下的电子传输能力和负微分电阻效应.  相似文献   

18.
Based on nonequilibrium Green's function method in combination with density functional theory, we study the electronic transport properties of dipyrimidinyl-diphenyl molecules embedded in a carbon atomic chain sandwiched between zigzag graphene nanoribbon and different edge geometries C_2N-h2D electrodes. Compared with the graphene electrodes, the C_2N-h2D electrode can cause rectifying and negative differential resistance effects.For C_2N-h2D with zigzag edges, a more remarkable negative differential resistance phenomenon appears, whereas armchair-edged C_2N-h2D can give rise to much better rectifying behavior. These results suggest that this system can be potentially useful for designs of logic and memory devices.  相似文献   

19.
The single thiolated arylethynylene molecule with 9,10-dihydroanthracene core(denoted as TADHA) possesses pronounced negative differential conductance(NDC) behavior at lower bias regime. The adsorption effects of F_2 molecule on the current and NDC behavior of TADHA molecular junctions are studied by applying non-equilibrium Green's formalism combined with density functional theory. The numerical results show that the F_2 molecule adsorbed on the benzene ring of TADHA molecule near the electrode can dramatically suppresses the current of TADHA molecular junction. When the F_2 molecule adsorbed on the conjugated segment of 9,10-dihydroanthracene core of TADHA molecule, an obviously asymmetric effect on the current curves induces the molecular system showing apparent rectifier behavior. However, the current especially the NDC behavior have been significantly enlarged when F_2 addition reacted with triple bond of TADHA molecule.  相似文献   

20.
Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fephthalocyanine dimers with two armchair single-walled carbon nanotube electrodes is investigated. The results show that the system can present high-performance spin filtering, magnetoresistance, and low-bias spin negative differential resistance effects by tuning the external magnetic field. These results show that the Fe-phthalocyanine dimer has the potential to design future molecular spintronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号