首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study the spin dependent transport through a quantum dot connected to ferromagnetic leads. Using the non-equilibrium generalization of the non-crossing approximation for finite Coulomb repulsion U, we compute the spin polarized conductance, the local average occupancies and the local densities of states in the Kondo regime. We show that transport properties are strongly affected if we allow double occupancy by using a finite value for U. In the framework of our model, we have successfully reproduced the recent experimental finding of an electrically controlled magnetic moment on a carbon nanotube quantum dot coupled to ferromagnetic nickel leads [3]. Besides, in addition to the well known splitting of the Kondo peak in the density of states due to the presence of ferromagnetic leads, we find that the additional splitting due to non-zero bias voltage leads to an unexpected increase of the total conductance, which has also been observed by Hauptmann et al.  相似文献   

2.
We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate (Γ R ) is much higher than the ferromagnet-dot tunnel coupling (Γ L ), and (ii) F-dominant case, when Γ L ? Γ R . For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted.  相似文献   

3.
We investigate the effects of spin-polarized leads on the Kondo physics of a quantum dot using the numerical renormalization group method. Our study demonstrates in an unambiguous way that the Kondo effect is not necessarily suppressed by the lead polarization: While the Kondo effect is quenched for the asymmetric Anderson model, it survives even for finite polarizations in the regime where charge fluctuations are negligible. We propose the linear tunneling magnetoresistance as an experimental signature of these behaviors. We also report on the influence of spin-flip processes.  相似文献   

4.
We study the Kondo effect in a quantum dot coupled to ferromagnetic leads and analyze its properties as a function of the spin polarization of the leads. Based on a scaling approach, we predict that for parallel alignment of the magnetizations in the leads the strong-coupling limit of the Kondo effect is reached at a finite value of the magnetic field. Using an equation of motion technique, we study nonlinear transport through the dot. For parallel alignment, the zero-bias anomaly may be split even in the absence of an external magnetic field. For antiparallel spin alignment and symmetric coupling, the peak is split only in the presence of a magnetic field, but shows a characteristic asymmetry in amplitude and position.  相似文献   

5.
江兆潭 《中国物理 B》2010,19(7):77307-077307
This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green’s function.In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures:a single-QD atom and a double-QD molecule.It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs,the one-,two-,or three-valley conductance pattern can be obtained.Furthermore,it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule.More interestingly,an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.  相似文献   

6.
We investigate the effects induced by ferromagnetic contacts attached to a serial double quantum dot. Spin polarization generates effective magnetic fields and suppresses the Kondo effect in each dot. The superexchange interaction J(AFM), tuned by the interdot tunneling rate t, can be used to compensate the effective fields and restore the Kondo resonance when the contact polarizations are aligned. As a consequence, the direction of the spin conductance can be controlled and even reversed using electrostatic gates alone. Our results demonstrate a new approach for controlling spin-dependent transport in carbon nanotube double dot devices.  相似文献   

7.
Spin-dependent electronic transport through a quantum dot has been analyzed theoretically in the cotunneling regime by means of the second-order perturbation theory. The system is described by the impurity Anderson Hamiltonian with arbitrary Coulomb correlation parameter U. It is assumed that the dot level is intrinsically spin-split due to an effective molecular field exerted by a magnetic substrate. The dot is coupled to two ferromagnetic leads whose magnetic moments are noncollinear. The angular dependence of electric current, tunnel magnetoresistance, and differential conductance are presented and discussed. The evolution of a cotunneling gap with the angle between magnetic moments and with the splitting of the dot level is also demonstrated.  相似文献   

8.
9.
Electronic transport through parallel coupled double quantum dots (DQD) with Rashba spin-orbit (RSO) interaction is investigated in Kondo regime by means of the slave-boson mean field approximation at zero temperature. By the co-action of the phase factor deduced by RSO interaction and the magnetic flux penetrating the parallel DQD, an interesting spin-dependent Kondo effect emerges. The molecular state representation theory is used to obtain a detailed understanding of the spin-dependent Kondo effect. It is shown that Quantum interference between the bonding Kondo state and antibonding state, which is modulated by the RSO interaction, plays a crucial role to the density of states and the linear conductance. The magnitude of each spin component conductance can be modulated by the RSO interaction strength. The conductance of each spin component exhibits 4π-periodic function with respect to φR. Moreover, the swap operation in the parallel DQD system can be implemented by tuning the RSO interaction.  相似文献   

10.
Based on the infinite-U Anderson model spin-polarized transport through the tunnel magnetoresistance (TMR) system of single-molecule quantum dot is investigated under the interplay of strong electron correlation and electron-phonon (e-ph) coupling. The spectral density and the nonlinear differential conductance are studied using the extended non-equilibrium Green's function method through calculating the dot-level splitting self-consistently. The results exhibit that a serial of peaks emerge on the two sides of the main Kondo peak for the antiparallel magnetic configuration of electrodes, while for the parallel case both the main and phonon-assisted satellite Kondo peaks all split up into two asymmetric peaks even at zero-bias. Correspondingly, the nonlinear differential conductance displays a set of satellite-peaks around the Kondo-peak in the presence of the e-ph interaction. Furthermore, extra maxima and minima appear in the TMR curve. The TMR alternates between the positive and the negative values along with the variation of bias voltage.  相似文献   

11.
迟锋  孙连亮  黄玲  赵佳 《中国物理 B》2011,20(1):17303-017303
We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin--orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters.  相似文献   

12.
Using the Keldysh nonequilibrium Green function method, we theoretically investigate the electron transport properties of a quantum dot coupled to two ferromagnetic electrodes, with inelastic electron-phonon interaction and spin flip scattering present in the quantum dot. It is found that the electron-phonon interaction reduces the current, induces new satellite polaronic peaks in the differential conductance spectrum, and at the same time leads to oscillatory tunneling magnetoresistance effect. Spin flip scattering suppresses the zero-bias conductance peak and splits it into two, with different behaviors for parallel and anti-parallel magnetic configuration of the two electrodes. Consequently, a negative tunneling magnetoresistance effect may occur in the resonant tunneling region, with increasing spin flip scattering rate.  相似文献   

13.
We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green’s function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.  相似文献   

14.
《Current Applied Physics》2015,15(10):1278-1285
We investigate the electron transport through a quantum dot connected with two ferromagnetic leads, by coupling one Majorana doublet laterally to the quantum dot. It is found that Majorana doublet keeps the value of zero-bias conductance to be independent of the shift of structural parameters, including dot level, relative lead-magnetization direction, and magnetic field on the dot. Even in the cases of asymmetric dot-lead couplings, the zero-bias conductance is weakly dependent on the relative lead-magnetization direction. On the other hand, when Majorana doublet is replaced by Majorana singlet, the zero-bias conductance value becomes sensitive to the structural parameters. Via analyzing the respective particle motion processes, the different influences of Majorana doublet and singlet are explained. We believe that this work can be helpful for understanding the peculiar properties of Majorana doublet.  相似文献   

15.
We study competition between the Kondo effect and superconductivity in a single self-assembled InAs quantum dot contacted with Al lateral electrodes. Because of Kondo enhancement of Andreev reflections, the zero-bias anomaly develops side peaks, separated by the superconducting gap energy Delta. For ten valleys of different Kondo temperature T(K) we tune the gap Delta with an external magnetic field. We find that the zero-bias conductance in each case collapses onto a single curve with Delta/k(B)T(K) as the only relevant energy scale, providing experimental evidence for universal scaling in this system.  相似文献   

16.
黄睿  吴绍全  闫从华 《中国物理 B》2010,19(7):77302-077302
Using an equation of motion technique, we report on a theoretical analysis of transport characteristics of a spin-valve system formed by a quantum dot coupled to ferromagnetic leads, whose magnetic moments are oriented at an angle θ with respect to each other, and a mesoscopic ring by the Anderson Hamiltonian. We analyse the density of states of this system, and our results reveal that the density of states show some noticeable characteristics depending on the relative angle θ of magnetic moment M, and the spin-polarised strength P in ferromagnetic leads, and also the magnetic flux Φ and the number of lattice sites NR in the mesoscopic ring. These effects might have some potential applications in spintronics.  相似文献   

17.
孙科伟  熊诗杰 《中国物理》2006,15(4):828-832
We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases. The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case. It increases as the external magnetic field increases. We obtain the relation between the coupling coefficient and conductance. If the interaction is big enough to prevent conduction electrons from tunnelling through the dot, the dispersion effect is dominant in this case. In the Kondo temperature regime, we obtain the conductivity of a quantum dot system with Kondo correlation.  相似文献   

18.
We study the ac conductance and equilibrium current fluctuations of a Coulomb-blockaded quantum dot in the Kondo regime. To this end we have developed an extension of the numerical renormalization group suitable for the nonperturbative calculation of finite-frequency transport properties. We demonstrate that ac transport gives access to the many-body resonance in the equilibrium spectral density. It provides a new route for measuring this key signature of Kondo physics, which so far has defied direct experimental observation.  相似文献   

19.
We investigate quantum dots in clean single-wall carbon nanotubes with ferromagnetic PdNi-leads in the Kondo regime. Most of the Kondo resonances exhibit a splitting, which depends on the tunnel coupling to the leads and an external magnetic field B, but only weakly on the gate voltage. Using numerical renormalization group calculations, we demonstrate that all salient features of the data can be understood using a simple model for the magnetic properties of the leads. The magnetoconductance at zero bias and low temperature depends in a universal way on gμ(B)(B-B(c))/k(B)T(K), where T(K) is the Kondo temperature and B(c) the external field compensating the splitting.  相似文献   

20.
吴绍全 《物理学报》2009,58(6):4175-4182
使用非平衡态格林函数方法和运动方程近似,研究了嵌入铁磁电极之间Aharonov-Bohm 干涉仪的自旋极化输运性质.在左右铁磁电极平行和反平行两种磁组态下,结合Fano因子分析和讨论了Fano 和Kondo 共振对该系统电导的影响,以及电导随自旋极化强度和磁通的变化.结果表明,自旋极化强度和磁通能有效地调节和控制电导,但电导的线形主要由磁通决定;在适当的条件下能导致大的正磁阻和负磁阻的出现.因此,该系统是一个很好的自旋阀晶体管,在自旋电子学中有潜在的应用价值. 关键词: Fano和Kondo共振 自旋极化强度 Fano因子 隧道磁阻  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号