首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we discuss the effects of electromagnetic field on the dynamical instability of a spherically symmetric expansionfree gravitational collapse. Darmois junction conditions are formulated by matching interior spherically symmetric spacetime to exterior Reissner–Nordström spacetime. We investigate the role of different terms in the dynamical equation at Newtonian and post Newtonian regimes by using perturbation scheme. It is concluded that instability range depends upon pressure anisotropy, radial profile of energy density and electromagnetic field, but not on the adiabatic index Γ. In particular, the electromagnetic field reduces the unstable region.  相似文献   

2.
The general dynamical equations for perfect fluid filled spheres with an outward flux of photons are derived. The vital role played by the energy density of the free gravitational field in accelerating photon production has been emphasized. It is pointed out that even when the material energy density is finite, the energy density of the free gravitational field can take infinitely large values resulting in vanishing surface area of the star. A generalized Schwarzschild interior solution with conformally flat geometry but with photon emission has been obtained. It is pointed out that the interior conformal coordinate system bears a strong resemblance to the exterior Krushkal coordinates. It is shown that for spherical star the invariant velocity of the fluid particles, falling towards the centre, is proportional to its radius suggesting that the outer envelopes collapse at a faster rate than the core part. It is shown that the interior radiating solution can be matched with generalized Schwarzchild exterior solution.  相似文献   

3.
We studied the influence of dilaton field on the dynamical collapse of a charged scalar one. Different values of the initial amplitude of dilaton field as well as the altered values of the dilatonic coupling constant were considered. We described structures of spacetimes and properties of black holes emerging from the collapse of electrically charged scalar field in dilaton gravity. Moreover, we provided a meaningful comparison of the collapse in question with the one in Einstein gravity, when dilaton field is absent and its coupling with the scalar field is equal to zero. The course and results of the dynamical collapse process seem to be very sensitive to the amplitude of dilaton field and to the value of the coupling constant in the underlying theory.  相似文献   

4.
In this paper, we study dynamics of the charged plane symmetric gravitational collapse. For this purpose, we discuss non-adiabatic flow of a viscous fluid and deduce the results for adiabatic case. The Einstein and Maxwell field equations are formulated for general plane symmetric spacetime in the interior. Junction conditions between the interior and exterior regions are derived. For the non-adiabatic case, the exterior is taken as plane symmetric charged Vaidya spacetime while for the adiabatic case, it is described charged plane symmetric spacetime. Using Misner and Sharp formalism, we obtain dynamical equations to investigate the effects of different forces over the rate of collapse. In non-adiabatic case, a dynamical equation is joined with transport equation of heat flux. Finally, a relation between the Weyl tensor and energy density is found.  相似文献   

5.
J Krishna Rao  M Annapurna 《Pramana》1986,27(5):637-646
The general dynamical equations for spherical gravitational collapse are derived by introducing the eigenvalue of the conformal Weyl tensor in the 2-2 component of the Einstein tensor and assuming the material content of the models to be a perfect fluid. Since this eigenvalue is coupled always with the material energy density, it has been interpreted as theenergy density of the free gravitational field whose presence is related with anisotropy and inhomogeneity. As a particular case, the collapse of a spherically symmetric dust (zero pressure) with vanishing radial acceleration (free fall collapse) is discussed. It is shown that the model is inhomogeneous with non-vanishing shear of the congruence of world lines of the dust particles. The model contains gravitational radiation by Szekere’s criterion since both shear invariant and the spatial gradient of density are non-vanishing. This is in contrast to the Oppenheimer-Synder model for which both the above mentioned characteristics are absent. A particular solution which is anisotropic and inhomogeneous has been given to prove the emission of gravitational radiation by the freely falling dust and in this case the energy density of the free gravitational field contains a typeN term superposed on the coulombian field.  相似文献   

6.
The gravitational collapse of charged imperfect fluids (including the presence of strings) models the structural evolution of the Universe. The dynamics of a charged cylindrically symmetric spacetime investigates the effects of charge on the rate of gravitational collapse. In this respect, the Einstein–Maxwell equations are formed and solved to obtain the values of the dynamical parameters of the fluid including density, pressure and electric field. These parameters are graphically presented. It was concluded that the string tension effects all the physical parameters of the fluid. Moreover, the density and electric field intensity increases while the fluid’s pressure decreases near the time of singularity formation.  相似文献   

7.
In classical physics the electromagnetic equations are described by Maxwell's equations. Maxwell's equations proved to be invariant under gauge, or Lorentz transformations. Also, Einstein's equations of the special theory of relativity are invariant under Lorentz transformations. On the other hand classical mechanics and quantum mechanics laws are invariant under Galilean transformations. This means that, there are two different dynamical structures describing our universe. Einstein's unified field theory failled in putting our universe in one dynamical structure. New electromagnetic and force field equations are going to be derived. They have the same shape like Maxwell's equations, but with different dynamical structure. Those equations are invariant under Galilean transformations and in the density matrix formalism of quantum mechanics.  相似文献   

8.
The problem of the electromagnetic plasma radiation near the electron plasma frequency ?pe is studied in the absence of an external magnetic field. Maxwell's equations together with the fluid equations, which include thermal effects, are solved for an infinite geometry as well as for a finite geometry, and the problem of the eigenmodes at a plasma frequency ? ?pe is studied. The excitation of these modes by a small density relativistic beam is discussed. It is shown that the presence of a small density beam with finite ?o/c (where ?o is the beam velocity and c the velocity of light in a vacuum) in a plasma of finite thermal velocity, can couple linearly the plasma oscillations excited by the beam with the electromagnetic plasma mode at ?pe. It is also shown that surface waves at a frequency ? ?pe can be excited by the beam.  相似文献   

9.
刘三秋  刘勇  李晓卿 《中国物理 B》2011,20(1):15203-015203
This paper analytically investigates the nonlinear behaviour of transverse plasmons in pair plasmas on the basis of the nonlinear governing equations obtained from Vlasov--Maxwell equations. It shows that high frequency transverse plasmons are modulationally unstable with respect to the uniform state of the pair plasma. Such an instability would cause wave field collapse into a localized region. During the collapse process, ponderomotive expulsion is greatly enhanced for the increase of wave field strength, leading to the formation of localized density cavitons which are significant for the future experimental research in the interaction between high frequency electromagnetic waves and pair plasmas.  相似文献   

10.
In this paper, the model describing a double \(\Lambda \) five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom–field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).  相似文献   

11.
The discharge impedance is calculated for a solenoidal inductively coupled plasma (ICP) discharge, which is one of the important sources for plasma processing. To calculate this impedance, the electromagnetic field quantities are obtained by solving the two-dimensional Maxwell equations in a realistic geometry. Also considered in the calculation is the anomalous skin effect which is regarded as a collisionless heating mechanism of ICP discharge. The results show that the discharge impedance is a function of various discharge parameters, such as plasma density, electron temperature, antenna position, collision frequency, excitation frequency, and chamber geometry.  相似文献   

12.
We have studied the dynamics of a cylindrical column of anisotropic, charged fluid which is experiencing dissipation in the form of heat flow, free-streaming radiation, and shearing viscosity, undergoing gravitational collapse. We calculate the Einstein-Maxwell field equations and, using the Darmois junction conditions, match the interior non-static cylindrically symmetric space-time with the exterior anisotropic, charged, cylindrically symmetric space-time. The behavior of the density, pressure and luminosity of the collapsing matter has been analyzed. From the dynamical equations, the effect of charge and dissipative quantities over the cylindrical collapse are studied. Finally, we have derived the solutions for the collapsing matter which is valid during the later stages of collapse and have discussed the significance from a physical standpoint.  相似文献   

13.
In this work, we have investigated the dynamical instability of spherically symmetric gravitating object under expansion-free condition in Einstein Gauss–Bonnet gravity. In this context, the field equations and dynamical equations have been established in the Gauss–Bonnet gravity. The linear perturbation scheme has been used on the dynamical equations to construct the collapse equation. The Newtonian, post Newtonian and post Newtonian approximations have been applied to investigate the general dynamical (in)stability equations. It has been observed that the instability range of the collapsing source is independent of adiabatic index Γ (stiffness of the fluid does not play any role). The instability range can be determined by the pressure anisotropy, energy density profile, Gauss–Bonnet parameter α and some constraints at Newtonian, post Newtonian and post Newtonian order.  相似文献   

14.
A quantum kinetic theory for correlated charged-particle systems in strong time-dependent electromagnetic fields is developed. Our approach is based on a systematic gauge-invariant nonequilibrium Green's functions formulation. Extending our previous analysis [1] we concentrate on the selfconsistent treatment of dynamical screening and electromagnetic fields which is applicable to arbitrary nonequilibrium situations. The resulting kinetic equation generalizes previous results to quantum plasmas with full dynamical screening and includes many-body effects. It is, in particular, applicable to the interaction of dense plasmas with strong electromagnetic fields, including laser fields and x-rays. Furthermore, results for the modification of the plasma screening and the longitudinal field fluctuations due to the electromagnetic field are presented.  相似文献   

15.
The interaction between cavitation bubble and solid surface is a fundamental topic which is deeply concerned for the utilization or avoidance of cavitation effect.The complexity of this topic is that the cavitation bubble collapse includes many extreme physical phenomena and variability of different solid surface properties.In the present work,the cavitation bubble collapse in hydrophobic concave is studied using the pseudopotential multi-relaxation-time lattice Boltzmann model(MRT-LB).The model is modified by involving the piecewise linear equation of state and improved forcing scheme.The fluid-solid interaction in the model is employed to adjust the wettability of solid surface.Moreover,the validity of the model is verified by comparison with experimental results and grid-independence verification.Finally,the cavitation bubble collapse in a hydrophobic concave is studied by investigating density field,pressure field,collapse time,and jet velocity.The superimposed effect of the surface hydrophobicity and concave geometry is analyzed and explained in the framework of the pseudopotential LBM.The study shows that the hydrophobic concave can enhance cavitation effect by decreasing cavitation threshold,accelerating collapse and increasing jet velocity.  相似文献   

16.
One of the most important questions in the physics of gravitation phenomena is whether gravitational collapse can lead to the formation of singularities which are not hidden by an event horizon. The Cosmic Censorship Conjecture (CCC) represents the hope that such a drastic event cannot happen in realistic physical situations. However, in the recent past several counter examples to the CCC were demonstrated by several researchers in situations of spherically symmetric gravitational collapse. The disturbing aspect about these counter examples is that they are strong naked singularities—they can crush matter to zero volume and can have a disastrous influence on causal physics. We examine these counter examples for their physical content by working through the dynamical collapse of inhomogeneous dust and argue that these are not physically acceptable counter examples. Our main result is that the singularities when naked are weak and when strong, strongly censored. The strong naked singularities in the counter examples do not arise from dynamical collapse; they result from the intrinsically singular nature of the initial density distributions chosen. The CCC seems to remain robust as far as spherically symmetric collapse is concerned.  相似文献   

17.
The mechanisms of the occurrence of self-induced and selective transparencies of semiconductor superlattices in a strong time-dependent electric field are investigated. The association of these mechanisms with Bloch oscillations, dynamical localization, and collapse of electron quasi-energy minibands is analyzed, and a comparison with the properties of Josephson junctions is made. It is shown that the self-induced transparency is due to the fact that the current-contributing component of the electron distribution function is destroyed by collisions at discrete values of the amplitude of the time-harmonic field, while the selective transparency is associated with the nonmonotonic dependence of the spectrum of nonlinear electron oscillations in the electric field on the amplitude of the field. The dynamical localization and collapse of quasi-energy minibands lead to the field energy dissipation and are favorable to destruction of the transparency states of the superlattice.  相似文献   

18.
By making use of the dynamical algebraic method we investigate a quantum system consisting of superconducting qubits interacting with data buses, where the qubits are driven by time-dependent electromagnetic field and obtain an explicit expression of time evolution operator. Furthermore, we explore the entanglement dynamics and the influence of the time-dependent electromagnetic field and the initial state on the entanglement sudden death and birth for the system. It is shown that the entanglement between the qubit and bus as well as the entanglement sudden death and birth can be controlled by the time-dependent electromagnetic field.  相似文献   

19.
This paper presents a three-dimensional time-dependent nonlinear theory of helix traveling wave tubes for beamwave interaction.The radio frequency electromagnetic fields are represented as the superposition of azimuthally symmetric waves in a vacuum sheath helix.Coupling impedance is introduced to the electromagnetic field equations’ stimulating sources,which makes the theory easier and more flexible to realize.The space charge fields are calculated by electron beam space-charge waves expressed as the superposition solutions of Helmholtz equations.The focusing forces due to either a solenoidal field or a periodic permanent magnetic field is also included.The dynamical equations of electrons are Lorentz equations associating with electromagnetic fields,focusing fields and space-charge fields.The numerically simulated results of a tube are presented.  相似文献   

20.
在静态极限下,通过傅里叶变换,研究了空间飞行器近尾区内等离子体与场之间的非稳态非线性相互作用,并进行了数值求解。数值模拟结果表明,在飞行器近尾区内会产生电磁孤波和密度空腔,由电场的塌缩现象可以探测到它们。因而通过探测电磁孤波和密度空腔的形状和强度,能够探寻具有隐身特性的飞行器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号