首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the two-color laser modulation of the magnetically induced Feshbach resonance. The two-color laser is nearly resonant with an optical bound-to-bound transition at the resonance position. The analytical formula of scattering length is obtained by solving the Heisenberg equation. The scattering length can be modified by changing the Rabi frequencies or optical field frequency. By choosing the suitable optical parameters, the two-body loss coefficient K2 can be greatly reduced compared to the usual single optical scheme.  相似文献   

2.
We demonstrate degenerate four-wave mixing involving both optical and microwave fields. This four-wave mixing process, with fields that differ in frequency by 5 orders of magnitude, results from stimulated Raman scattering of the optical field from an atomic ground-state Zeeman coherence in warm rubidium vapor, which is induced and maintained by the microwave field.  相似文献   

3.
结合非均匀球粒子对平面波散射的散射场计算的改进算法,提出了平面波垂直入射无限长分层圆柱散射场快速稳定而有效的改进电磁散射算法。与已有算法相比,改进算法所能计算的无限长非均匀介质圆柱的尺寸参量突破10000,计算层数达到106,并且计算时间很短,最多仅为几秒。该算法可以用于不同的波段以及不同领域的任意无耗或吸收无限长圆柱体散射场的计算。最后将该算法应用于梯度折射率聚合物光纤(GI-POF)散射特性的研究,为非接触、在线测量聚合物光纤折射率分布提供了理论依据。  相似文献   

4.
We investigate the optical bistability behavior of a three-level closed-loop atomic system beyond the multi-photon resonance condition. Using the Floquet decomposition, we solve the time-dependent equations of motion, beyond the multi-photon resonance condition. By identifying the different scattering processes contributing to the medium response, it is shown that in general the optical bistability behavior of the system is not phase-dependent. The phase dependence is due to the scattering of the driving and coupling fields into the probe field at a frequency, which, in general, differs from the probe field frequency.  相似文献   

5.
基于位函数的引入与介质参量无关,将各向异性目标内外的电场展为级数形式,得到了任意各向异性目标n阶散射场、目标内场的递推表达式,给出了介电常量张量的变换关系,在平面波任意入射的条件下,并给出了传播单位矢量与极化单位矢量的一般关系.以磁化冷等离子体为例,给出了一阶散射场的具体表达式,并对二阶散射场引起的误差进行了评估.在THz波段和光波段,对所得结果进行了部分仿真.结果表明:微分散射对电波频率和极化状态等因素的影响较为敏感,介电常量张量的非对角元素对散射的影响不大,当波长与目标尺寸一定时,仿真结果不仅适用于THz波段,对其它波段也成立.  相似文献   

6.
基于位函数的引入与介质参量无关,将各向异性目标内外的电场展为级数形式,得到了任意各向异性目标n阶散射场、目标内场的递推表达式,给出了介电常量张量的变换关系,在平面波任意入射的条件下,并给出了传播单位矢量与极化单位矢量的一般关系.以磁化冷等离子体为例,给出了一阶散射场的具体表达式,并对二阶散射场引起的误差进行了评估.在THz波段和光波段,对所得结果进行了部分仿真.结果表明:微分散射对电波频率和极化状态等因素的影响较为敏感,介电常量张量的非对角元素对散射的影响不大,当波长与目标尺寸一定时,仿真结果不仅适用于THz波段,对其它波段也成立.  相似文献   

7.
A quantum theory of free carrier absorption in nondegenerate semiconductors and in strong magnetic fields which was previously developed to treat the case when acoustic phonon scattering dominates the free carrier absorption process [1] is extended to treat the case when nonpolar optical scattering is important. When the electromagnetic radiation field is polarized parallel to the direction of the applied magnetic field, results are obtained which are similar to those when acoustic phonon scattering is dominant. The free carrier absorption is an oscillatory function of the magnetic field which on the average increases in magnitude with the magnetic field. However, more structure in the free carrier absorption occurs when nonpolar optical phonon scattering dominates. This is due to the fact that there are two periods in the oscillatory magnetic field dependence associated with the emission or the absorption of optical phonons during the intraband transitions. When the cyclotron frequency exceeds the sum of the photon and optical phonon frequencies, i.e. ωc > θ + ωo, the free carrier absorption is predicted to increase linearly with magnetic field when ?ωc? kBT. The magnetic field dependence of the free carrier absorption can be explained in terms of phonon-assisted transitions between the various Landau levels in a band involving the emission and absorption of optical phonons.  相似文献   

8.
Simons MT  Novikova I 《Optics letters》2011,36(16):3027-3029
In this Letter we report experimental demonstration of nonlinear frequency conversion at several optical frequencies in a whispering-gallery mode resonator (WGMR). Because of the enhancement of nonlinear interactions inside a WGMR, interaction of a 1064 nm pump field with a LiNbO(3) disk produced a weak but measurable non-phase-matched 532 nm second-harmonic field at room temperature (>100 °C below the phase-matching temperature) for pump powers of a few tens of milliwatts. For higher pump powers, we observed the generation of four additional fields at 545, 559, 573, and 587 nm. The relative spectral shift between two consecutive fields corresponds to a 455 cm(-1) vibrational mode in LiNbO(3) crystal. Our preliminary analysis indicates that these fields are the result of a multiphonon hyper-Raman scattering in which two photons of the pump field are converted into one photon of a higher-frequency field and one or several optical phonons.  相似文献   

9.
We propose a new scheme for the optical frequency standard based on the phase-matching effect of the nonadiabatic interaction of two quasimonochromatic fields with the states 1S0, 1P1, and 3P0 of atoms 88Sr, which are trapped in an optical lattice with magic wavelength. After establishing the phase correlation between two laser fields by the nonadiabatic process, the final linewidth for the difference frequency field, which can be generated by a nonlinear optical crystal, is about 1 mHz.  相似文献   

10.
The conventional coherence theory suggests that the fields radiated by statistically homogeneous sources correlate over spatial regions of the order of the wavelength irrespective of the distance from the surface of the source. Contrary to these predictions, we show that the spatial correlations of optical fields in close proximity of highly scattering, randomly inhomogeneous media depend on this distance and, moreover, their extent can be significantly smaller than the wavelength. The contribution of evanescent fields is experimentally demonstrated and the coherence length in the near field is shown to relate to the coherence properties at the surface which are, in turn, determined by the structural characteristics of the random media.  相似文献   

11.
The theory of light scattering in plasmas containing a magnetic field yields the special case of modulated scattering spectra. The modulation frequency is governed by the field in the plasma and is equal to the electron cyclotron frequency. In this investigation magnetic fields in a plasma were determined by a laser scattering experiment. The experimental data were: electron densityn e=1016cm?3, electron temperatureT e=3.2 eV, scattering angle θ=90 °, scattering parameter α=0.6, and a maximum field in the plasma of 125 kG. The spectrum measured at the maximum magnetic field was modulated with 3.6 × 1011 Hz. In scattering experiments with a field reduced by about 20% the observed modulation frequency was 2.8 × 1011 Hz. A thermal spectrum with a smooth profile was found when no field was present in the plasma. Applying the theory of cyclotron modulated spectra one obtains from the scattering experiment magnetic fields of 128, 100, and 0 kG. Within the experimental accuracy these values agree well with the fields determined by means of magnetic probes. Other possible interpretations of the measured deviations from thermal spectra (modulation with the plasma frequency or additional cold electron components in the plasma) are discussed, but they afford no explanation. This experiment has domonstrated that magnetic fields in plasmas can be measured locally and almost without disturbance by means of light scattering.  相似文献   

12.
We generalize the definition of localization length to disordered systems driven by a time-periodic potential using a Floquet-Green function formalism. We study its dependence on the amplitude and frequency of the driving field in a one-dimensional tight-binding model with different amounts of disorder in the lattice. As compared to the autonomous system, the localization length for the driven system can increase or decrease depending on the frequency of the driving. We investigate the dependence of the localization length with the particle's energy and prove that it is always periodic. Its maximum is not necessarily at the band center as in the non-driven case. We study the adiabatic limit by introducing a phenomenological inelastic scattering rate which limits the delocalizing effect of low-frequency fields.  相似文献   

13.
程冬  李亚  凤尔银  黄武英 《中国物理 B》2017,26(1):13402-013402
We present a detailed analysis of near zero-energy Feshbach resonances in ultracold collisions of atom and molecule,taking the He–PH system as an example, subject to superimposed electric and magnetic static fields. We find that the electric field can induce Feshbach resonance which cannot occur when only a magnetic field is applied, through couplings of the adjacent rotational states of different parities. We show that the electric field can shift the position of the magnetic Feshbach resonance, and change the amplitude of resonance significantly. Finally, we demonstrate that, for narrow magnetic Feshbach resonance as in most cases of ultracold atom–molecule collision, the electric field may be used to modulate the resonance, because the width of resonance in electric field scale is relatively larger than that in magnetic field scale.  相似文献   

14.
为解决非自由声场中近场声全息重建时,干扰声在目标声源表面产生的散射影响,提出一种基于球面波叠加法的自由场还原技术。该技术首先采用基于球面波叠加法的声场分离技术获得向内和向外传播的声场,然后以目标声源的表面导纳作为边界条件,实现目标声源辐射声和散射声的分离,从而获得等效于自由声场的测量条件。该技术为准确实现非自由声场中的噪声源识别创造了条件。文中首先详细描述了该技术的基本原理,并提出一种最优球面波展开项数选取方法,最后通过数值仿真说明了该技术的有效性。结果表明:在频率较低时,散射声影响较小,采用声场分离技术和自由场还原技术效果相当;但随着频率升高,散射声影响逐步增强,必须采用自由场还原技术才能准确获得目标声源辐射声。   相似文献   

15.
Tuning the flow of light by external fields is a challenging task for scientific studies and optical applications, but it is important in many applications such as switches, modulators, and slow wave structures. Here, new results are presented which demonstrate that this effectively can be achieved by external magnetic fields in one-dimensional photonic crystals made from semiconducting material. The advantage of using semiconducting material is the magnetic-field dependent dielectric function of the free charge carriers particularly where the magnetic field causes large and strongly varying contributions – near the plasma frequency and the cyclotron resonance frequency. The results of simulations on the basis of a multiple scattering method at infrared and microwave frequencies and of experiments on Indium Antimonide in the latter frequency regime confirm the tunability up to the extreme case from full transparency to opaqueness and vice versa.  相似文献   

16.
We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.  相似文献   

17.
It is well known that an optical trap can be imprinted by a light field in an ultracold-atom system embedded in an optical cavity,and driven by three different coherent fields.Of the three fields coexisting in the optical cavity there is an intense control field that induces a giant Kerr nonlinearity via electromagnetically-induced transparency,and another field that creates a periodic optical grating of strength proportional to the square of the associated Rabi frequency.In this work elliptic-soliton solutions to the nonlinear equation governing the propagation of the probe field are considered,with emphasis on the possible generation of optical soliton trains forming a discrete spectrum with well defined quantum numbers.The problem is treated assuming two distinct types of periodic optical gratings and taking into account the negative and positive signs of detunings(detuning above or below resonance).Results predict that the competition between the self-phase and cross-phase modulation nonlinearities gives rise to a rich family of temporal soliton train modes characterized by distinct quantum numbers.  相似文献   

18.
基于光子晶体光纤中受激布里渊散射的光载波抑制   总被引:1,自引:1,他引:0  
耿丹  杨冬晓  章献民  耿岩 《光子学报》2008,37(9):1833-1836
设计了一种基于光子晶体光纤中受激布里渊散射的载波滤波器.该滤波器利用两个环形器和一段光子晶体光纤构成了一个环形腔,这种腔结构有效地降低了光纤中受激布里渊散射的阈值.理论分析了光子晶体光纤载波滤波器对提高光调制深度和射频增益的影响.利用25 m的高非线性光子晶体光纤作为受激布里渊增益介质,当入射载波功率为70 mW时,微波光子信号的射频增益为5.38 dB,实验结果与理论计算相吻合.  相似文献   

19.
The effect of nonpolar optical phonon scattering on the free-carrier absorption in n-type semiconductors such as germanium has been investigated quantum mechanically in quantizing magnetic fields. It is assumed that the energy band of electrons in semiconductors is nonparabolic and the dominant scattering mechanism for electrons in solids is that of nonpolar optical phonon scattering. When the radiation field is polarized parallel to the magnetic field, the absorption coefficient will be of complex value due to the interaction of the radiation field and the optical phonon field with electrons in semiconductors. Results show that real and imaginary parts of the absorption coefficient oscillate quite considerably with the magnetic field in the high fields for the heavily doped n-type Ge. Both real and imaginary parts of the absorption coefficient appear as positive and negative values when changing the magnetic field. In low magnetic fields, the imaginary part of the absorption coefficient disappears. However, if the density of electrons increases, the imaginary part of the absorption coefficient will increase with the magnetic field in low fields. Moreover, it is also shown that the amplitudes of oscillations for the real and imaginary parts of the absorption coefficient do not vary in a regular trend with the density of electrons.  相似文献   

20.
The optical response of an atomic vapor can be coherently manipulated by tunable quantum interference occurring in atomic transition processes. A periodic layered medium whose unit cells consist of a dielectric and an EIT (electromagnetically induced transparency) atomic vapor is designed for light propagation manipulation. Such an EIT‐based periodic layered medium exhibits a flexible frequency‐sensitive optical response, where a very small change in probe frequency can lead to a drastic variation of reflectance and transmittance. As the destructive quantum interference relevant to two‐photon resonance arises in EIT atoms interacting with both control and probe fields, the controllable optical processes that depend sensitively on the external control field will take place in this EIT‐based periodic layered medium. Such a frequency‐sensitive and field‐controlled optical behavior of reflection and transmission in the EIT photonic crystal can be applicable to designs of new devices such as photonic switches, photonic logic gates and photonic transistors, where one laser field can be controlled by the other one, and would have potential applications in the areas of integrated optical circuits and other related techniques (e.g., all‐optical instrumentations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号