首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of alkali halides (NaBr, NaCl, KCl) on the interactions between the cationic gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and the anionic polyelectrolyte sodium polyacrylate (NaPAA) in aqueous solution has been investigated by fluorescence emission spectroscopy, UV transmittance, zeta potential, and transmission electron microscopy (TEM). With increased addition of NaBr, a counterbalancing salt effect on the critical aggregation concentration (CAC) is observed. At low concentrations, NaBr facilitates the formation of micelle-like structures between surfactant and polyelectrolyte and results in a smaller CAC. At high concentrations, NaBr screens the electrostatic attraction between surfactant and polyelectrolyte and leads to a larger CAC. Upon the formation of micelle-like structures at high surfactant concentrations, the addition of NaBr is favorable for larger aggregates. The microstructure detected by TEM show that a global structure is generally formed in the presence of NaBr. The interactions also depend on ion species. Compared to NaBr, the addition of NaCl or KCl yields a smaller CAC.  相似文献   

2.
Salt effect on the interaction of anionic polyelectrolyte sodium carboxymethylcellulose (NaCMC) with cationic gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) [C12H25(CH3)2N(CH2)6N(CH3)2C12H25]Br2 (C12C6C12Br2) has been investigated using turbidimetric titration, steady-state fluorescence, and mobility measurement. It is found that the critical aggregation concentration(cac) for C12C6C12Br2/NaCMC complexes depends little on addition of sodium bromide (NaBr). However, in the presence of nonionic surfactant Triton X-100 (TX100), the critical ionic surfactant mole fraction for the onset of complex formation (Yc) increases markedly with increasing NaBr concentration. These salt effects are supposed as the overall result from competition between the increase of interaction and the screening of interaction. The increase of interaction is referred to as the effect that the larger micelle with higher surface charge density induced by salt has a stronger interaction with oppositely charged polyelectrolyte. The screening of interaction is referred to as the salt screening of electrostatic attraction between the polymer chain and the surfactant. For complex formation between C12C6C12Br2 and NaCMC, the increase of interaction probably compensates the screening of interaction, leading to constant cac values at different salt concentrations. For complex formation between the C12C6C12Br2/TX100 mixed micelle and NaCMC, the screening of interaction probably plays a dominant role, leading to higher suppression of electrostatic binding of micelles to polyelectrolyte.  相似文献   

3.
We investigated the interaction between an anionic polyelectrolyte (carboxymethylcellulose) and cationic surfactants (DTAB, TTAB, and CTAB) at the air/water interface, using surface tension, ellipsometry, and Brewster angle microscopy techniques. At low surfactant concentration, a synergistic phenomenon is observed due to the co-adsorption of polyelectrolyte/surfactant complexes at the interface, which decreases the surface tension. When the surfactant critical aggregation concentration (cac) is reached, the adsorption saturates and the thickness of the adsorbed monolayer remains constant until another characteristic surfactant concentration, C0, is reached, at which all the polymer charges are bound to surfactant in bulk. Above C0, the absorbed monolayer becomes much thicker, suggesting adsorption of bulk aggregates, which have become more hydrophobic due to charge neutralization.  相似文献   

4.
The phase behavior of aqueous mixtures of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and oppositely charged polyelectrolyte sodium polyacrylate (NaPAA) has been studied experimentally. Compared to the mixtures of the traditional surfactant dodecyltrimethylammonium bromide (DTAB) and NaPAA, the gel phase region in the 12-6-12/NaPAA solution is larger. Element analysis reveals that NaPAA in the gel phase tends to replace the counterions of surfactant micelle and to release its own counterions. Spherical aggregates are observed in either top or bottom gel phase as detected by transmission electron microscopy. The addition of sodium bromide (NaBr) leads to a decrease in the gel phase region and the occurrence of a new cream phase.  相似文献   

5.
The aggregation of amyloid beta-peptide [Abeta(1-40)] into fibril is a key pathological process associated with Alzheimer's disease. The effect of cationic gemini surfactant hexamethylene-1,6-bis-(dodecyldimethylammonium bromide) [C(12)H(25)(CH(3))(2)N(CH(2))(6)N(CH(3))(2)C(12)H(25)]Br(2) (designated as C(12)C(6)C(12)Br(2)) and single-chain cationic surfactant dodecyltrimethylammonium bromide (DTAB) on the Alzheimer amyloid beta-peptide Abeta(1-40) aggregation behavior was studied by microcalorimetry, circular dichroism (CD), and atomic force microscopy (AFM) measurements at pH 7.4. Without addition of surfactant, 0.5 g/L Abeta(1-40) mainly exists in dimeric state. It is found that the addition of the monomers of C(12)C(6)C(12)Br(2) and DTAB may cause the rapid aggregation of Abeta(1-40) and the fibrillar structures are observed by CD spectra and the AFM images. Due to the repulsive interaction among the head groups of surfactants and the formation of a small hydrophobic cluster of surfactant molecules, the fibrillar structure is disrupted again as the surfactant monomer concentration is increased, whereas globular species are observed in the presence of micellar solution. Different from single-chain surfactant, C(12)C(6)C(12)Br(2) has a much stronger interaction with Abeta(1-40) to generate larger endothermic energy at much lower surfactant concentration and has much stronger ability to induce the aggregation of Abeta(1-40).  相似文献   

6.
Dodecanoyl amidoalkylguanidine hydrochlorides (C(12)A(m)G, m = 2, 3, 4, 6) are cationic surfactants that have an amidoalkyl group (A(m)) as spacer between the cationic guanidine and hydrophobic groups in the molecule. The effect of the A(m) group on the aggregation properties of the surfactants was evaluated through measurements of their critical micelle concentration (cmc) value, Krafft point, phase behavior, area occupied by one molecule at the air/water interface, and micellar aggregation number. Dodecylguanidine hydrochloride (C(12)A(0)G) with no A(m) group is a unique cationic surfactant because it exhibits a strong tendency for self-assembly when compared with common ionic surfactants, due to the hydrogen bonding between its guanidine groups in addition to the hydrophobic interaction between its alkyl chains [M. Miyake, K. Yamada, N. Oyama, Langmuir 24 (2008) 8527-8532]. In contrast, C(12)A(m)G showed a decreasing tendency for self-assembly with increasing alkyl chain length, m, of the A(m) group up to m = 3, above which the tendency increased. Such changes in aggregation tendency of the surfactants were suggested to arise from an increased bulkiness of the hydrophilic part caused by the A(m) group, resulting in a decrease in the hydrogen bonding between the guanidine groups and an increase in micellization through the cooperative hydrophobic interaction between the hydrophilic groups. From the balance of these effects, the area of the hydrophilic part of C(12)A(4)G was the largest and the hydrogen bonding between the guanidine groups in C(12)A(4)G was weakened. It is suggested in guanidine-type surfactant that A(4) gave a similar aggregation tendency to traditional ionic surfactants and a weak effect for skin.  相似文献   

7.
The interactions of sodium dodecyl sulfate (SDS) with the triblock copolymer L64 (EO13-PO30-EO13) and hexaethylene glycol mono-n-dodecyl ether (C12EO6) were studied using electromotive force, isothermal titration microcalorimetry, differential scanning microcalorimetry, and surface tension measurements. In certain regions of binding, mixed micelles are formed, and here we could evaluate an interaction parameter using regular solution theory. The mixed micelles of L64 with both SDS and C12EO6 exhibit synergy. When L64 is present in its nonassociated state, it forms polymer/micellar SDS complexes at SDS concentrations above the critical aggregation concentration (cac). The cac is well below the critical micellar concentration (cmc) of pure SDS, and a model suggesting how bound micelles are formed at the cac in the presence of a polymer is described. The interaction of nonassociated L64 with C12EO6 is a very rare example of strong binding between a nonionic surfactant and a nonionic polymer, and C12EO6/L64 mixed micelles are formed. We also carried out small angle neutron scattering measurement to determine the structure of the monomeric polymer/micellar SDS complex, as well as the mixed L64/C12EO6 aggregates. In these experiments, contrast matching was achieved by using the h and d forms of SDS, as well as C12EO6. During the early stages of the formation of polymer-bound SDS micelles, SDS aggregates with aggregation numbers of approximately 20 were found and such complexes contain 4-6 bound L64 monomers. The L64/C12EO6 data confirmed the existence of mixed micelles, and structural information involving the composition of the mixed micelle and the aggregation numbers were evaluated.  相似文献   

8.
The interactions between oppositely charged surfactant/polymer mixtures have been studied using conductivity and turbidity measurements. The dependence of aggregation phenomenon on the chain length and head group modifications of conventional cationic surfactants, i.e., hexadecyl- (HTAB), tetradecyl- (TTAB), and dodecyltrimethylammonium bromides (DTAB) and dimeric cationic surfactants, i.e., decyl- (DeDGB) and dodecyldimethylgemini bromides (DDGB), is investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolytes at critical aggregation concentration (cac). The cac values are considerably lower than the critical micelle concentration (cmc) values for the same surfactant. After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in aqueous polyelectrolyte than in pure water. Among the conventional and dimeric cationic surfactants, DTAB and DeDGB, respectively, have been found to have least interactions with oppositely charged polyelectrolytes.  相似文献   

9.
We have examined the polymer-surfactant interaction in mixed solutions of the cationic surfactants, i.e., dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, tetradecyltriphenylphosphonium bromide, and tetradecylpyridinium bromide and a semiflexible anionic polyelectrolyte carboxymethylcellulose in water and aqueous salt solutions by various techniques: tensiometry, viscosimetry or ion-selective electrode method, and dynamic light scattering. We have investigated the effect of varying surfactant chain length, head group size, counterion, and ionic strength on the critical aggregation concentration (CAC) of mixed polymer surfactant systems and the collapse of the polymer molecule under different solution conditions. The CAC decreases with increasing alkyl chain length. Above a certain surfactant concentration, mixed aggregates start growing until their macroscopic phase separation. The growth is more rapid with greater surfactant tail length and with increasing head group size. This is attributed in both cases to the increasing hydrophobic interaction between polymer and surfactant. Among surfactants with monovalent halide counterions, iodide induces the strongest binding, reflected by the onset of growth of the mixed aggregates at low surfactant concentration. This is perhaps related to the decreasing hydration of the counterion from chloride to iodide. The surfactant concentration at which the viscosity of the solution starts to decrease sharply is smaller than the CAC, and probably reflects polymer chain shrinkage due to noncooperative binding.  相似文献   

10.
The aggregation behavior of cationic gemini surfactants with respect to variation in head group polarity and spacer length is studied through conductance, surface tension, viscosity, and small-angle neutron-scattering (SANS) measurements. The critical micellar concentration (cmc), average degree of micelle ionization (beta(ave)), minimum area per molecule of surfactant at the air-water interface (A(min)), surface excess concentration (gamma(max)), and Gibb's free energy of micellization (delta G(mic)) of the surfactants were determined from conductance and surface tension data. The aggregation numbers (N), dimensions of micelles (b/a), effective fractional charge per monomer (alpha), and hydration of micelles (h(E)) were determined from SANS and viscosity data, respectively. The increasing head group polarity of gemini surfactant with spacer chain length of 4 methylene units promotes micellar growth, leading to a decrease in cmc, beta(ave), and delta G(mic) and an increase in N and b/a. This is well supported by the observed increase in hydration (h(E)) of micelles with increase in aggregation number (N) and dimension (b/a) of micelle.  相似文献   

11.
Effect of the concentration of water-soluble polyanion (sodium carboxymethylcellulose, NaCMC) on the interaction between a cationic surfactant (1-dodecyl-3-methylimidazolium bromide, C12mimBr) and NaCMC in aqueous solution has been studied by isothermal titration microcalorimetry (ITC), conductivity, surface tension, and rheological measurements. From the surfactant/polymer interacting enthalpy, it can be deduced that the electrostatic attraction between the cationic surfactant and anionic polyelectrolyte causes an endothermic process, and the C12mimBr monomers binding to the NaCMC chains to form micelle-like aggregates through hydrophobic interaction is an exothermic process. Increasing the NaCMC concentration causes the interaction between C12mimBr and NaCMC to decrease, and the characteristic surfactant concentrations, including the critical aggregation surfactant concentration (CAC), the surfactant concentration to form free micelles (Cm), and the saturation concentration of surfactant on the NaCMC chains (CS) to increase. Because of the strong electrostatic interaction between C12mimBr and NaCMC, the formation of C12mimBr/NaCMC complexes can lead to precipitation or redissolution depending on solution composition, so the critical precipitation concentration (CP) and the onset of a redissolution concentration (CR) has been determined by the electrical conductivity. The rheological results reveal a dramatic increase in solution viscosity around the CAC, attributed to interpolymer cross-linking through the formation of mixed micelles involving the carboxylic acid groups of NaCMC and the surfactant.  相似文献   

12.
An out line and summary of literature studies on interactions between different types of amphiphilic copolymer micelles with surfactants has been given. This field of research is still emerging and it is difficult presently to make generalisations on the effects of surfactants on the copolymer association. The effects are found to be varied depending upon the nature and type of hydrophobic (hp) core and molecular architecture of the copolymers and the hydrocarbon chain length and head group of surfactants. The information available on limited studies shows that both anionic and cationic surfactants (in micellar or molecular form) equally interact strongly with the associated and unassociated forms of copolymers. The beginning of the interaction is typically displayed as critical aggregation concentration (CAC), which lies always below the critical micelle concentration of the respective surfactant. The surfactants first bind to the hydrophobic core of the copolymer micelles followed by their interaction with the hydrophilic (hl) corona parts. The extent of binding highly depends upon the nature, hydropobicity of the copolymer molecules, length of the hydrocarbon tail and nature of the head group of the surfactant. The micellization of poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO)–poly(ethylene oxide) was found to be suppressed by the added surfactants and at higher surfactant concentrations, the block copolymer micelles get completely demicellized. This effect was manifested itself in the melting of liquid crystalline phases in the high copolymer concentrations. However, no such destabilization was found for the micelles of polystyrene (PS)–poly(ethylene oxide) copolymers in water. On the contrary, the presence of micellar bound surfactant associates resulted in to large super micellar aggregates through induced intra micellar interactions. But with the change in the hydrophobic part from polystyrene to poly(butadiene) (PB) in the copolymer, the added surfactants not only reduced the micellar size but also transformed cylindrical micelles to spherical ones. The mixtures in general exhibited synergistic effects. So varied association responses were noted in the mixed solutions of surfactants and copolymers.  相似文献   

13.
The interactions of oppositely charged polyelectrolyte and surfactant (anionic polyacrylamide AD37 and dodecylpyridinium chloride DPC, respectively) in aqueous solution were studied at 25 °C by measurement of viscosity and conductivity. The system was investigated in aqueous medium in the absence and presence of NaCl. The AD37 interacts strongly with the DPC surfactant of the opposite charge. The interactions are electrostatic and hydrophobic. Thus, they are manifested in the formation of hydrophobic aggregates. The critical aggregation concentration (CAC) is much lower than the critical micellar concentration (CMC) of the surfactant alone. However, the value of the saturation concentration X 2 is higher. The ionic strength of the medium after addition of salt explains an important part of these interactions. In fact, the electrolyte charge affects the CMC and the CAC values.  相似文献   

14.
The properties and phase diagrams of aqueous mixtures of dodecyltrimethylammonium bromide (C(12)TAB) with the sodium oligoarene sulphonates (POSn), POS2, POS3, POS4, and POS6 have been studied using surface tension and neutron reflectometry to study the surface, and neutron small angle scattering and fluorescence to study the bulk solution. The behavior of POS2 and POS3 is reasonably consistent with mixed micelles of C(12)TAB and POSn-(C(12)TA)(n). These systems exhibit a single critical micelle concentration (CMC) at which the surface tension reaches the usual plateau. This is contrary to a recent report which suggests that the onset of the surface tension plateau does not coincide with the CMC. In the POS3 system, the micelles conform to the core-shell model, are slightly ellipsoidal, and have aggregation numbers in the range 70-100. In addition, the dissociation constant for ionization of the micelles is significantly lower than for free C(12)TAB micelles, indicating binding of the POS3 ion to the micelles. Estimation of the CMCs of the POSn-(C(12)TA)(n) from n = 1-3 assuming ideal mixing of the two component surfactants and the observed values of the mixed CMC gives values that are consistent with the nearest related gemini surfactant. The POS4 and POS6 systems are different. They both phase separate slowly to form a dilute and a concentrated (dense) phase. Fluorescence of POS4 has been used to show that the onset of aggregation of surfactant (critical aggregation concentration, CAC) occurs at the onset of the surface tension plateau and that, at the slightly higher concentration of the phase separation, the concentration of POS4 and C(12)TAB in the dilute phase is at or below its concentration at the CAC, that is, this is a clear case of complex coacervation. The surface layer of the C(12)TA ion in the surface tension plateau region, studied directly by neutron reflectometry, was found to be higher than a simple monolayer (observed for POS2 and POS3) for both the POS4 and POS6 systems. In POS6 this evolved after a few hours to a structure consisting of a monolayer with an attached subsurface bilayer, closely resembling that observed for one class of polyelectrolyte/surfactant mixtures. It is suggested that this structured layer, which must be present on the surface of the dilute phase of the coacervated system, is a thin wetting film of the dense phase. The close resemblance of the properties of the POS6 system to that of one large group of polyelectrolyte/surfactant mixtures shows that the surface behavior of oligoion/surfactant mixtures can quickly become representative of that of true polyelectrolyte/surfactant mixtures. In addition, the more precise characterization possible for the POS6 system identifies an unusual feature of the surface behavior of some polyelectrolyte/surfactant systems and that is that the surface tension can remain low and constant through a precipitation/coacervation region because of the characteristics of two phase wetting. The well-defined fixed charge distribution in POS6 also suggests that rigidity and charge separation are the factors that control whether a given system will exhibit a flat surface tension plateau or the alternative of a peak on the surface tension plateau.  相似文献   

15.
16.
The interaction of fluorocarbon containing hydrophobically modified polyelectrolyte(FMPAANa) with two kinds of nonionic surfactants(hydrogenated and fluorinated)in a semidilute (0.5wt%) aqueous solution had been studied by rheological measurements,Association behavior was found in both systems.The hydrophobic interaction of FMPAANa with fluorinated surfactant(FC171) is much stronger than that with hydrogenated surfactant(NP7.5) at low surfactoant concentrations.The interaction is strengthened by surfactants being added for the density of active junctions increased.Whereas distinct phenomena for FC171 and NP7.5 start to be found as the surfactants added over their respective certain concentration.The interaction of polyelectrolyte with fluorinated surfactant increases dramatical ly while that with hydrogenated surfactant decreases.  相似文献   

17.
The interactions between oppositely charged surfactant-polymer systems have been studied using surface tension and conductivity measurements and the dependence of aggregation phenomenon over the polyelectrolyte concentration and chain length of cationic ATAB surfactants, cetyltrimethyl ammonium bromide (CTAB), tetradecyltrimethyl ammonium bromide (TTAB), and dodecyltrimethyl ammonium bromide (DTAB) have been investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolyte at critical aggregation concentration (cac). The cac values of ATAB surfactants in the presence of anionic polyelectrolyte, sodium carboxy methyl cellulose (NaCMC), are considerably lower than their critical micelle concentration (cmc). After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in polyelectrolyte aqueous solution than in pure water. Among the cationic surfactants (i.e., CTAB, TTAB, and DTAB), DTAB was found to have least interaction with NaCMC. Surfactants with longer tail size strongly favor the interaction, indicating the dependence of aggregation phenomenon on the structure, morphology, and tail length of the surfactant.   相似文献   

18.
IntroductionWater solublepolymershavegainedconsiderableat tentioninthepastdecadesbecauseoftheirwidelyindus trialapplicationsandfriendlinesstoenvironment .1 3Espe ciallyhydrophobicallymodifiedwater solublepolymers(HMWSP)whichbearasmallamountofhydrophobesont…  相似文献   

19.
两性离子甜菜碱表面活性剂(SB3-12)胶束具有较好的生物相容性,由于相反电荷的极性头之间具有静电中和作用,胶束表面具有小的负电荷密度。当加入阴离子的十二烷基硫酸钠(SDS)以后,负离子SD-与SB3-12胶束极性区内层季铵正电荷的静电中和作用,能连续地调节胶束表面磺酸基的负电荷密度,这有利于对药物分子的选择性增溶和调节在生理条件下的药物的输送。等温滴定量热(ITC)研究发现SB3-12和SDS有强的协同效应,混合临界胶束浓度(CMC)和胶束化焓明显降低,并得到两者协同效应的弱静电作用机理。当模型药物分子芦丁(Rutin)与SB3-12/SDS混合胶束作用时,芦丁7位羟基的氢解离后的阴离子与SDS共同作用于SB3-12形成混合胶束。UV-Vis吸收光谱和~1H NMR谱研究发现,在SB3-12胶束中,芦丁分子的A环位于季铵阳离子附近,B环位于两个相反电荷之间的弱极性区域。在SDS胶束中,B环位于栅栏层,而A环和二糖暴露于水相侧。在混合胶束中,随着SDS摩尔分数增加,对A环的静电吸引变弱。离子表面活性剂对两性离子表面活性剂胶束表面电荷密度的调节作用,本质上是对胶束极性区域的物理及化学性质的微调,进而实现对药物的可控增溶。  相似文献   

20.
The interfacial and aggregation behavior of the nonionic surfactant decanoyl-N-methyl-glucamide (Mega-10) with the cationic surfactant hexadecyltriphenylphosphonium bromide (HTPB) have been studied using interfacial tension measurements and fluorescence techniques. From interfacial tension measurements, the critical micellar concentrations (cmc) and various interfacial thermodynamic parameters have been evaluated. The experimental results were analyzed in the context of the pseudophase separation model, the regular solution theory, and the Maeda’s approach. These approaches allowed us to determine the interaction parameter and composition in the mixed state. By using the static quenching method, the mean micellar aggregation numbers of pure and mixed micelles of HTPB+Mega-10 were obtained. It was found that that the aggregation number decreases with increasing mole fraction of HTPB. This behavior is attributed to the presence of the bulky head group of HTPB, which creates steric head group incompatibility and/or electrostatic repulsion. The micropolarity of the micelle was monitored with pyrene fluorescence intensity ratio. It was observed that the increasing participation of HTPB induces the formation of micelles with a hydrated structure. The polarization of the fluorescent probe Rhodamine B was monitored in micellar medium and found to increase with the increase of ionic content. This behavior suggests the formation of mixed micelles with a more ordered or rigid structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号