首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 351.1 nm photoelectron spectra of the N-methyl-5-pyrazolide anion and the N-methyl-5-imidazolide anion are reported. The photoelectron spectra of both isomers display extended vibrational progressions in the X2A' ground states of the corresponding radicals that are well reproduced by Franck-Condon simulations, based on the results of B3LYP/6-311++G(d,p) calculations. The electron affinities of the N-methyl-5-pyrazolyl radical and the N-methyl-5-imidazolyl radical are 2.054 +/- 0.006 eV and 1.987 +/- 0.008 eV, respectively. Broad vibronic features of the A(2)A' ' states are also observed in the spectra. The gas-phase acidities of N-methylpyrazole and N-methylimidazole are determined from measurements of proton-transfer rate constants using a flowing afterglow-selected ion flow tube instrument. The acidity of N-methylpyrazole is measured to be Delta(acid)G(298) = 376.9 +/- 0.7 kcal mol(-1) and Delta(acid)H(298) = 384.0 +/- 0.7 kcal mol(-1), whereas the acidity of N-methylimidazole is determined to be Delta(acid)G(298) = 380.2 +/- 1.0 kcal mol(-1) and Delta(acid)H(298)= 388.1 +/- 1.0 kcal mol(-1). The gas-phase acidities are combined with the electron affinities in a negative ion thermochemical cycle to determine the C5-H bond dissociation energies, D(0)(C5-H, N-methylpyrazole) = 116.4 +/- 0.7 kcal mol(-1) and D(0)(C5-H, N-methylimidazole) = 119.0 +/- 1.0 kcal mol(-1). The bond strengths reported here are consistent with previously reported bond strengths of pyrazole and imidazole; however, the error bars are significantly reduced.  相似文献   

2.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

3.
We determined the gas-phase acidities of two cysteine-polyalanine peptides, HSCA3 and HSCA4, using a triple-quadrupole mass spectrometer through application of the extended kinetic method with full entropy analysis. Five halogenated carboxylic acids were used as the reference acids. The negatively charged proton-bound dimers of the deprotonated peptides with the conjugate bases of the reference acids were generated by electrospray ionization. Collision-induced dissociation (CID) experiments were carried out at three collision energies. The enthalpies of deprotonation (Delta(acid)H) of the peptides were derived according to the linear relationship between the logarithms of the CID product ion branching ratios and the differences of the gas-phase acidities. The values were determined to be Delta(acid)H(HSCA3) = 317.3 +/- 2.4 kcal/mol and Delta(acid)H (HSCA4) = 316.2 +/- 3.9 kcal/mol. Large entropy effects (Delta(DeltaS) = 13-16 cal/mol K) were observed for these systems. Combining the enthalpies of deprotonation with the entropy term yielded the apparent gas-phase acidities (Delta(acid)G(app)) of 322.1 +/- 2.4 kcal/mol (HSCA3) and 320.1 +/- 3.9 kcal/mol (HSCA4), in agreement with the results obtained from the CID-bracketing experiments. Compared with that in the isolated cysteine residue, the thiol group in HSCA3,4 has a stronger gas-phase acidity by about 20 kcal/mol. This increased acidity is likely due to the stabilization of the negatively charged thiolate group through internal solvation.  相似文献   

4.
Hydrogen-bonded gas-phase molecular clusters of dihydrogen trioxide (HOOOH) have been investigated using DFT (B3LYP/6-311++G(3df,3pd)) and MP2/6-311++G(3df,3pd) methods. The binding energies, vibrational frequencies, and dipole moments for the various dimer, trimer, and tetramer structures, in which HOOOH acts as a proton donor as well as an acceptor, are reported. The stronger binding interaction in the HOOOH dimer, as compared to that in the analogous cyclic structure of the HOOH dimer, indicates that dihydrogen trioxide is a stronger acid than hydrogen peroxide. A new decomposition pathway for HOOOH was explored. Decomposition occurs via an eight-membered ring transition state for the intermolecular (slightly asynchronous) transfer of two protons between the HOOOH molecules, which form a cyclic dimer, to produce water and singlet oxygen (Delta (1)O 2). This autocatalytic decomposition appears to explain a relatively fast decomposition (Delta H a(298K) = 19.9 kcal/mol, B3LYP/6-311+G(d,p)) of HOOOH in nonpolar (inert) solvents, which might even compete with the water-assisted decomposition of this simplest of polyoxides (Delta H a(298K) = 18.8 kcal/mol for (H 2O) 2-assisted decomposition) in more polar solvents. The formation of relatively strongly hydrogen-bonded complexes between HOOOH and organic oxygen bases, HOOOH-B (B = acetone and dimethyl ether), strongly retards the decomposition in these bases as solvents, most likely by preventing such a proton transfer.  相似文献   

5.
Through the use of the Active Thermochemical Tables approach, the best currently available enthalpy of formation of HO2 has been obtained as delta(f)H(o)298 (HO2) = 2.94 +/- 0.06 kcal mol(-1) (3.64 +/- 0.06 kcal mol(-1) at 0 K). The related enthalpy of formation of the positive ion, HO2+, within the stationary electron convention is delta(f)H(o)298 (HO2+) = 264.71 +/- 0.14 kcal mol(-1) (265.41 +/- 0.14 kcal mol(-1) at 0 K), while that for the negative ion, HO2- (within the same convention), is delta(f)H(o)298 (HO2-) = -21.86 +/- 0.11 kcal mol(-1) (-21.22 +/- 0.11 kcal mol(-1) at 0 K). The related proton affinity of molecular oxygen is PA298(O2) = 100.98 +/- 0.14 kcal mol(-1) (99.81 +/- 0.14 kcal mol(-1) at 0 K), while the gas-phase acidity of H2O2 is delta(acid)G(o)298 (H2O2) = 369.08 +/- 0.11 kcal mol(-1), with the corresponding enthalpy of deprotonation of H2O2 of delta(acid)H(o)298 (H2O2) = 376.27 +/- 0.11 kcal mol(-1) (375.02 +/- 0.11 kcal mol(-1) at 0 K). In addition, a further improved enthalpy of formation of OH is briefly outlined, delta(f)H(o)298 (OH) = 8.93 +/- 0.03 kcal mol(-1) (8.87 +/- 0.03 kcal mol(-1) at 0 K), together with new and more accurate enthalpies of formation of NO, delta(f)H(o)298 (NO) = 21.76 +/- 0.02 kcal mol(-1) (21.64 +/- 0.02 kcal mol(-1) at 0 K) and NO2, delta(f)H(o)298 (NO2) = 8.12 +/- 0.02 kcal mol(-1) (8.79 +/- 0.02 kcal mol(-1) at 0 K), as well as H(2)O(2) in the gas phase, delta(f)H(o)298 (H2O2) = -32.45 +/- 0.04 kcal mol(-1) (-31.01 +/- 0.04 kcal mol(-1) at 0 K). The new thermochemistry of HO2, together with other arguments given in the present work, suggests that the previous equilibrium constant for NO + HO2 --> OH + NO2 was underestimated by a factor of approximately 2, implicating that the OH + NO2 rate was overestimated by the same factor. This point is experimentally explored in the companion paper of Srinivasan et al. (next paper in this issue).  相似文献   

6.
Thermochemical data calculated using ab initio molecular orbital theory are reported for 16 BxNxHy compounds with x = 2, 3 and y > or = 2x. Accurate gas-phase heats of formation were obtained using coupled cluster with single and double excitations and perturbative triples (CCSD(T)) valence electron calculations extrapolated to the complete basis set (CBS) limit with additional corrections including core/valence, scalar relativistic, and spin-orbit corrections to predict the atomization energies and scaled harmonic frequencies to correct for zero point and thermal energies and estimate entropies. Computationally cheaper calculations were also performed using the G3MP2 and G3B3 variants of the Gaussian 03 method, as well as density functional theory (DFT) using the B3LYP functional. The G3MP2 heats of formation are too positive by up to approximately 6 kcal/mol as compared with CCSD(T)/CBS values. The more expensive G3B3 method predicts heats of formation that are too negative as compared with the CCSD(T)/CBS values by up to 3-4 kcal/mol. DFT using the B3LYP functional and 6-311+G** basis set predict isodesmic reaction energies to within a few kcal/mol compared with the CCSD(T)/CBS method so isodesmic reactions involving BN compounds and the analogous hydrocarbons can be used to estimate heats of formation. Heats of formation of c-B3N3H12 and c-B3N3H6 are -95.5 and -115.5 kcal/mol at 298 K, respectively, using our best calculated CCSD(T)/CBS approach. The experimental value for c-B3N3H6 appears to be approximately 7 kcal/mol too negative. Enthalpies, entropies, and free energies are calculated for many dehydrocoupling and dehydrogenation reactions that convert BNH6 to alicyclic and cyclic oligomers and H2(g). Generally, the reactions are highly exothermic and exergonic as well because of the release of 1 or more equivalents of H2(g). For c-B3N3H12 and c-B3N3H6, available experimental data for sublimation and vaporization lead to estimates of their condensed phase 298 K heats of formation: DeltaHf degrees [c-B3N3H12(s)] = -124 kcal/mol and DeltaHf degrees [c-B3N3H6(l)] = -123 kcal/mol. The reaction thermochemistries for the dehydrocoupling of BNH6(s) to c-B3N3H12(s) and the dehydrogenation of c-B3N3H12(s) to c-B3N3H6(l) are much less exothermic compared with the gas-phase reactions due to intermolecular forces which decrease in the order BNH6 > cyclo-B3N3H12 > cyclo-B3N3H6. The condensed phase reaction free energies are less negative compared with the gas-phase reactions but are still too favorable for BNH6 to be regenerated from either c-B3N3H12 or c-B3N3H6 by just an overpressure of H2.  相似文献   

7.
Results of ab initio self-consistent-field (SCF) and density functional theory (DFT) calculations of the gas-phase structure, acidity (free energy of deprotonation, ΔGo), and aromaticity of 1,2-diseleno-3,4-dithiosquaric acid (3,4-dithiohydroxy-3-cyclobutene-1,2-diselenone, H2C4Se2S2) are reported. The global minimum found on the potential energy surface of 1,2-diseleno-3,4-dithiosquaric acid presents a planar conformation. The ZZ isomer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very close in energy. The optimized geometric parameters exhibit a bond length equalization relative to reference compounds, cyclobutanediselenone, and cyclobutenedithiol. The computed aromatic stabilization energy (ASE) by homodesmotic reaction (Eq 1) is −20.1 kcal/mol (MP2(fu)/6-311+G** //RHF/6-311+G**) and −14.9 kcal/mol (B3LYP//6-311+G**//B3LYP/6-311+G**). The aromaticity of 1,2-diseleno-3,4-dithiosquaric acid is indicated by the calculated diamagnetic susceptibility exaltation (Λ) −17.91 (CSGT(IGAIM)-RHF/6-311+G**//RHF/6-311+G**) and −31.01 (CSGT(IGAIM)-B3LYP/6-311+G**//B3LYP/6-311+G**). Thus, 1,2-diseleno-3,4-dithiosquaric acid fulfils the geometric, energetic and magnetic criteria of aromaticity. The calculated theoretical gas-phase acidity is ΔGo 1(298K)=302.7 kcal/mol and ΔGo 2(298K)=388.4 kcal/mol. Hence, 1,2-diseleno-3,4-dithiosquaric acid is a stronger acid than squaric acid(3,4-dihydroxy-3-cyclobutene-1,2-dione, H2C4O4). Received: 11 April 2000 / Accepted: 7 July 2000 / Published online: 27 September 2000  相似文献   

8.
There are two values, -26.0 and -27.7 kcal mol(-1), that are routinely reported in literature evaluations for the standard enthalpy of formation, Delta(f) H(o)(298), of formaldehyde (CH(2)=O), where error limits are less than the difference in values. In this study, we summarize the reported literature for formaldehyde enthalpy values based on evaluated measurements and on computational studies. Using experimental reaction enthalpies for a series of reactions involving formaldehyde, in conjunction with known enthalpies of formation, its enthalpy is determined to be -26.05+/-0.42 kcal mol(-1), which we believe is the most accurate enthalpy currently available. For the same reaction series, the reaction enthalpies are evaluated using six computational methods: CBS-Q, CBS-Q//B3, CBS-APNO, G2, G3, and G3B3 yield Delta(f) H(o)(298)=-25.90+/-1.17 kcal mol(-1), which is in good agreement to our experimentally derived result. Furthermore, the computational chemistry methods G3, G3MP2B3, CCSD/6-311+G(2df,p)//B3LYP/6-31G(d), CCSD(T)/6-311+G(2df,p)//B3LYP/6-31G(d), and CBS-APNO in conjunction with isodesmic and homodesmic reactions are used to determine Delta(f) H(o)(298). Results from a series of five work reactions at the higher levels of calculation are -26.30+/-0.39 kcal mol(-1) with G3, -26.45+/-0.38 kcal mol(-1) with G3MP2B3, -26.09+/-0.37 kcal mol(-1) with CBS-APNO, -26.19+/-0.48 kcal mol(-1) with CCSD, and -26.16+/-0.58 kcal mol(-1) with CCSD(T). Results from heat of atomization calculations using seven accurate ab initio methods yields an enthalpy value of -26.82+/-0.99 kcal mol(-1). The results using isodesmic reactions are found to give enthalpies more accurate than both other computational approaches and are of similar accuracy to atomization enthalpy calculations derived from computationally intensive W1 and CBS-APNO methods. Overall, our most accurate calculations provide an enthalpy of formation in the range of -26.2 to -26.7 kcal mol(-1), which is within computational error of the suggested experimental value. The relative merits of each of the three computational methods are discussed and depend upon the accuracy of experimental enthalpies of formation required in the calculations and the importance of systematic computational errors in the work reaction. Our results also calculate Delta(f) H(o)(298) for the formyl anion (HCO(-)) as 1.28+/-0.43 kcal mol(-1).  相似文献   

9.
Reliable thermochemical data for the reaction SO3 + H2O<-->SO3 x H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3 x H2O complex. The electronic binding energy is accurately computed to De = 40.9+/-1.0 kJ/mol = 9.8+/-0.2 kcal/mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0 = -Delta H(1a)0(0 K) = 7.7+/-0.5 kcal/mol and Delta H(1a)0(298 K) = -8.3+/-1.0 kcal/mol.  相似文献   

10.
Rate coefficients for the gas-phase thermal decomposition of HO(2)NO(2) (peroxynitric acid, PNA) are reported at temperatures between 331 and 350 K at total pressures of 25 and 50 Torr of N(2). Rate coefficients were determined by measuring the steady-state OH concentration in a mixture of known concentrations of HO(2)NO(2) and NO. The measured thermal decomposition rate coefficients k(-)(1)(T,P) are used in combination with previously published rate coefficient data for the HO(2)NO(2) formation reaction to yield a standard enthalpy for reaction 1 of Delta(r)H degrees (298K) = -24.0 +/- 0.5 kcal mol(-1) (uncertainties are 2sigma values and include estimated systematic errors). A HO(2)NO(2) standard heat of formation, Delta(f)H degrees (298K)(HO(2)NO(2)), of -12.6 +/- 1.0 kcal mol(-1) was calculated from this value. Some of the previously reported data on the thermal decomposition of HO(2)NO(2) have been reanalyzed and shown to be in good agreement with our reported value.  相似文献   

11.
The thermochemical properties of melamine and cyanuric acid were characterized using mass spectrometry measurements along with computational studies. A triple-quadrupole mass spectrometer was employed with the application of the extended Cooks kinetic method. The proton affinity (PA), gas-phase basicity (GB), and protonation entropy (ΔpS) of melamine were determined to be 226.2 ± 2.0 kcal/mol, 218.4 ± 2.0 kcal/mol, and 26.2 ± 2.0 cal/mol K, respectively. The deprotonation enthalpy (ΔacidH), gas-phase acidity (ΔacidG), and deprotonation entropy (ΔacidS) of cyanuric acid were determined to be 330.7 ± 2.0 kcal/mol, 322.9 ± 2.0 kcal/mol, and 26.1 ± 2.0 cal/mol K, respectively. The geometries and energetics of melamine, cyanuric acid, and related ionic species were calculated at the B3LYP/6-31+G(d) level of theory. The computationally predicted proton affinity of melamine (225.9 kcal/mol) and gas-phase deprotonation enthalpy of cyanuric acid (328.4 kcal/mol) agree well with the experimental results. Melamine is best represented as the imide-like triazine-triamine form and the triazine nitrogen is more basic than the amino group nitrogen. Cyanuric acid is best represented as the keto-like tautomer and the N-H group is the most probable proton donor.  相似文献   

12.
The C - H bond dissociation energies for naphthalene were determined using a negative ion thermochemical cycle involving the gas-phase acidity (Delta H (acid)) and electron affinity (EA) for both the alpha- and beta-positions. The gas-phase acidity of the naphthalene alpha- and beta-positions and the EAs of the alpha- and beta-naphthyl radicals were measured in the gas phase in a flowing after glow-triple quadrupole apparatus. A variation of the Cooks kinetic method was used to measure the EAs of the naphthyl radicals by collision-induced dissociation of the corresponding alpha- and beta-naphthylsulfinate adducts formed by reactions in the flow tube portion of the instrument. Calibration references included both pi and sigma radicals, and full entropy analysis was performed over a series of calibration curves measured at collision energies ranging from 3.5 to 8 eV (center-of-mass). The measured EAs are 33.0 +/- 1.4 and 31.4 +/- 1.0 kcal mol(-1) (1 kcal = 4.184 kJ) for the alpha- and beta-naphthyl radicals, respectively. The gas-phase acidities for naphthalene were measured by the DePuy silane cleavage method, which utilizes the relative abundances of aryldimethylsiloxides and trimethylsiloxide that result from competitive cleavages from a proposed penta coordinate hydroxysiliconate intermediate. The measured acidities are 394.0 +/- 5.0 and 397.6 +/- 4.8 kcal mol(-1) for the alpha- and beta- positions, respectively. The C - H bond dissociation energies calculated from the thermochemical cycle are 113.4 +/- 5.2 and 115.4 +/- 4.9 kcal mol(-1) for the alpha- and beta-positions, respectively. These energies are, to within experimental error, indistinguishable and are approximately the same as the first bond dissociation energy for benzene.  相似文献   

13.
The 351.1 nm photoelectron spectrum of 1-pyrazolide anion has been measured. The 1-pyrazolide ion is produced by hydroxide (HO(-)) deprotonation of pyrazole in a flowing afterglow ion source. The electron affinity (EA) of the 1-pyrazolyl radical has been determined to be 2.938 +/- 0.005 eV. The angular dependence of the photoelectrons indicates near-degeneracy of low-lying states of 1-pyrazolyl. The vibronic feature of the spectrum suggests significant nonadiabatic effects in these electronic states. The gas phase acidity of pyrazole has been determined using a flowing afterglow-selected ion flow tube; Delta(acid)G(298) = 346.4 +/- 0.3 kcal mol(-1) and Delta(acid)H(298) = 353.6 +/- 0.4 kcal mol(-1). The N-H bond dissociation energy (BDE) of pyrazole is derived to be D(0)(pyrazole, N-H) = 106.4 +/- 0.4 kcal mol(-1) from the EA and the acidity using a thermochemical cycle. In addition to 1-pyrazolide, the photoelectron spectrum demonstrates that HO(-) deprotonates pyrazole at the C5 position to generate a minor amount of 5-pyrazolide anion. The photoelectron spectrum of 5-pyrazolide has been successfully reproduced by a Franck-Condon (FC) simulation based on the optimized geometries and the normal modes obtained from B3LYP/6-311++G(d,p) electronic structure calculations. The EA of the 5-pyrazolyl radical is 2.104 +/- 0.005 eV. The spectrum exhibits an extensive vibrational progression for an in-plane CCN bending mode, which indicates a substantial difference in the CCN angle between the electronic ground states of 5-pyrazolide and 5-pyrazolyl. Fundamental vibrational frequencies of 890 +/- 15, 1110 +/- 35, and 1345 +/- 30 cm(-1) have been assigned for the in-plane CCN bending mode and two in-plane bond-stretching modes, respectively, of X (2)A' 5-pyrazolyl. The physical properties of the pyrazole system are compared to the isoelectronic systems, pyrrole and imidazole.  相似文献   

14.
Density functional theory calculations were employed to study the relative contribution of resonance versus inductive effects toward the 37 kcal/mol enhanced gas-phase acidity (DeltaH degrees (acid)) of formic acid (1) over methanol (2). The gas-phase acidities of formic acid, methanol, vinyl alcohol (5), and their vinylogues (6, 8, and 9) were calculated at the B3LYP/6-31+G level of theory. Additionally, acidities were calculated for the formic acid and vinyl alcohol vinylogues in which the formyl group and the vinyl group, respectively, were perpendicular to the rest of the conjugated system. Comparisons among these calculated acidities suggest that inductive effects are the predominant effects responsible for the enhanced acidity of formic acid over methanol, accounting for between roughly 62% and 65% of the total enhanced acidity; the remaining 38% to 35% of the acidity enhancement appears to be due to resonance effects. Further comparisons suggest that resonance effects are between roughly 58% and 65% of the 26 kcal/mol calculated acidity enhancement of vinyl alcohol over methanol, and the remaining 42% to 35% are due to inductive effects.  相似文献   

15.
The relative gas-phase acidities were determined for eight flavonoids, applying the kinetic method, by means of electrospray-ion trap mass spectrometry. The experimental acidity order, myricetin > luteolin > quercetin > (+/-)-taxifolin > kaempferol > apigenin > (+)-catechin > (+/-)-naringenin shows good agreement with the order obtained by theoretical calculations at the B3LYP/6-311 + G(2d,2p)//HF/6-31G(d) level. Moreover, these calculations provide the gas-phase acidities of the different OH groups for each flavonoid. The calculated acidity values (Delta(ac)H), corresponding to the most favorable deprotonation, cover a narrow range, 314.8-330.1 kcal/mol, but the experimental method is sensitive enough to differentiate the acidity of the various flavonoids. For all the flavones and the flavanol, catechin, the 4'-hydroxyl group is the most favored deprotonation site whereas for the flavanones studied, taxifolin and naringenin, the most acidic site is the 7-hydroxyl group. On the other hand, the 5-hydroxyl, in flavones and naringenin, and the 3-hydroxyl, in taxifolin and catechin, are always the less acidic positions. The acidity pattern observed for this family of compounds mainly depends on the following structural features: The ortho-catechol group, the 2,3 double bond and the 4-keto group.  相似文献   

16.
Experimental results of an unprecedented haloform-type reaction in which 4-alkyl-4-hydroxy-3,3-difluoromethyl trifluoromethyl ketones undergo base-promoted selective cleavage of the CO-CF(3) bond, yielding 3-hydroxy-2,2-difluoroacids and fluoroform, are rationalized using DFT (B3LYP) calculations. The gas-phase addition of hydroxide ion to 1,1,1,3,3-pentafluoro-4-hydroxypentan-2-one (R) is found to be a barrierless process, yielding a tetrahedral intermediate (INT), involving a DeltaG(r)(298 K) of -61.4 kcal/mol. The CO-CF(3) bond cleavage in INT leads to a hydrogen-bonded [CH(3)CHOHCF(2)CO(2)H...CF(3)](-) complex by passage through a transition structure (TS1) with a DeltaG()(298 K) of 20.8 kcal/mol and a DeltaG(r)(298 K) of 9.8 kcal/mol. This complex undergoes a proton transfer between its components, yielding a hydrogen-bonded [CH(3)CHOHCF(2)CO(2)...CHF(3)](-) complex. This process has associated with it a DeltaG()(298 K) of only 3.1 kcal/mol and a DeltaG(r)(298 K) of -43.3 kcal/mol. The CO-CF(2) bond cleavage in INT leads to a hydrogen-bonded [CH(3)CHOHCF(2)...CF(3)CO(2)H](-) complex by passage through a transition structure (TS3) with a DeltaG()(298 K) of 29.2 kcal/mol and a DeltaG(r)(298 K) of 25.1 kcal/mol. The lower energy barrier found for CO-CF(3) bond cleavage in INT is ascribed to the larger number of fluorine atoms stabilizing the negative charge accumulated on the CF(3) moiety of TS1, as compared to the number of fluorine atoms stabilizing the negative charge on the CH(3)CHOHCF(2) moiety of TS3. The solvent-induced effects on the two pathways, introduced within the SCRF formalism through PCM calculations, do not reverse the predicted preference of the CO-CF(3) over the CO-CF(2) bond cleavage of R in the gas phase.  相似文献   

17.
Gaseous equilibria in the V-Ag-Cl system were studied at elevated temperatures by effusion-beam mass spectrometry, where the pertinent species were generated by reaction of Cl 2(g) with V + Ag granules in the effusion cell source. Reaction enthalpies were derived from the equilibrium data, and the standard enthalpies of formation at 298 K of gaseous VCl, VCl2, and VCl3 were found to be +49.7, -34.8, and -85.6 kcal mol(-1), respectively. The corresponding bond dissociation energies at 298 K are D(V-Cl) = 102.9 kcal, D(ClV-Cl) = 113.5 kcal, D(Cl2V-Cl) = 79.8 kcal, and D(Cl3V-Cl) = 69.5 kcal. From these data, the dissociation energy D degrees 0(VCl) = 101.9 kcal mol(-1) or 4.42 eV is obtained. An alternate value, Delta(f)H(o)298(VCl 3,g) = -87.0 kcal mol (-1) was derived from third-law analysis of literature sublimation data for VCl3(s). In addition, literature thermochemical data on VCl4(g) were re-evaluated, leading to Delta(f)H(o)298 = -126.1 kcal mol (-1). The results are compared with various estimates in the literature.  相似文献   

18.
The gas-phase acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine have been examined using both theoretical (B3LYP/6-31+G*) and experimental (bracketing, Cooks kinetic) methods. This paper represents a comprehensive examination of multiple acidic sites of thymine and cytosine and of the acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine. Thymine exists as the most stable "canonical" tautomer in the gas phase, with a DeltaH(acid) of 335 +/- 4 kcal mol(-1) (DeltaG(acid) = 328 +/- 4 kcal mol(-1)) for the more acidic N1-H. The acidity of the less acidic N3-H site has not, heretofore, been measured; we bracket a DeltaH(acid) value of 346 +/- 3 kcal mol(-1) (DeltaG(acid) = 339 +/- 3 kcal mol(-1)). The proton affinity (PA = DeltaH) of thymine is measured to be 211 +/- 3 kcal mol(-1) (GB = DeltaG = 203 +/- 3 kcal mol(-1)). Cytosine is known to have several stable tautomers in the gas phase in contrast to in solution, where the canonical tautomer predominates. Using bracketing methods in an FTMS, we measure a DeltaH(acid) for the more acidic site of 342 +/- 3 kcal mol(-1) (DeltaG(acid) = 335 +/- 3 kcal mol(-1)). The DeltaH(acid) of the less acidic site, previously unknown, is 352 +/- 4 kcal mol(-1) (345 +/- 4 kcal mol(-1)). The proton affinity is 228 +/- 3 kcal mol(-1) (GB = 220 +/- 3 kcal mol(-1)). Comparison of these values to calculations indicates that we most likely have a mixture of the canonical tautomer and two enol tautomers and possibly an imine tautomer under our conditions in the gas phase. We also measure the acidity and proton affinity of cytosine using the extended Cooks kinetic method. We form the proton-bound dimers via electrospray of an aqueous solution, which favors cytosine in the canonical form. The acidity of cytosine using this method is DeltaH(acid) = 343 +/- 3 kcal mol(-1), PA = 227 +/- 3 kcal mol(-1). We also examined 1-methyl cytosine, which has fewer accessible tautomers than cytosine. We measure a DeltaH(acid) of 349 +/- 3 kcal mol(-1) (DeltaG(acid) = 342 +/- 3 kcal mol(-1)) and a PA of 230 +/- 3 kcal mol(-1) (GB = 223 +/- 3 kcal mol(-1)). Our ultimate goal is to understand the intrinsic reactivity of nucleobases; gas-phase acidic and basic properties are of interest for chemical reasons and also possibly for biological purposes because biological media can be quite nonpolar.  相似文献   

19.
周立新 《中国化学》2000,18(6):808-814
Results of ab initio self-consistent-field (SCF) and density functional theory (DFT) calculations of the gas-phase structure,acidity (free energy of deprotonation,G0) and aro-maticity of tetraselenosquaric acid (3,4-diselenyl-3-cy-dobutene-1,2-diselenone,H2C4Se4) are reported.The global minimum found on the potential energy surface of tetraselenosquaric acid presents a planar conformation.The ZZ iso-mer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very dose in energy.The optimized geometric parameters exhibit a bond length equalization relative to reference compounds,cyclobu-tanediselenone,and cydobutenediselenol.The computed aromatic stabilization energy (ASE) by homodesmotic reaction is -77.4 (MP2(fu)/6 - 311 G //RHF/6 - 311 G) and - 54.8 kJ/mol (B3LYP/6 - 311 G //B3LYP/6 -311 G).The aromaticity of tetraselenosquaric add is indicated by the calculated diamagnetic susceptibility exaltation (A) - 19.13 (CSGT(IGAEM) - RHF/6 - 311 G// RHF/6-  相似文献   

20.
We determined the gas-phase acidity of methylthioacetic acid (MTA) in a triple-quadrupole mass spectrometer using the Cooks’ kinetic method with the consideration of entropy effects. The negatively charged proton-bound dimers were generated by electrospray ionization. Collision-induced dissociation was applied to the dimer ions and the product ion ratios were measured at four different collision energies. The gas-phase acidity (ΔH acid) of MTA was determined to be 340.0±1.7 kcal/mol using the extended kinetic method and 339.8±1.7 kcal/mol using the standard kinetic method. The entropy term is insignificant in this case and can be ignored. The standard kinetic method yielded a free energy of deprotonation of MTA (ΔG acid) of 333.0±1.7 kcal/mol. The entropy of the acid dissociation, ΔS acid, was estimated to be 22.8 cal/mol K. Theoretical prediction at the B3LYP/6-31+G* level of theory gives a similar value for ΔH acid of 338. 9 kcal/mol. In the gas-phase, MTA is a stronger acid than methoxyacetic acid, although in solution, MTA is a weaker one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号