首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jiang  Demin  Zhu  Chenyi  He  Yuan  Xing  ChengCheng  Xie  Kun  Xu  Yan  Wang  Yuqiao 《Journal of Solid State Electrochemistry》2022,26(11):2435-2443
Journal of Solid State Electrochemistry - Anodes play an important role in the extracellular electron transfer (EET) process in microbial fuel cells (MFCs). Herein, polyaniline modified...  相似文献   

2.
Anode electrodes play a key role in generating electricity from microbial fuel cells (MFCs) because they directly affect microbial activities. This communication reports the preparation of nitrogen-doped carbon nanotubes with a bamboo-like nanostructure (Bamboo-NCNTs) by catalytic pyrolysis of ethylene diamine and application of the Bamboo-NCNTs as anode-modifying materials in MFCs. The Bamboo-NCNTs significantly improved performance of an MFC in current production and power output, and reduced internal resistance of the anode compared with conventional CNTs-modified and unmodified anodes. The improved performance could be attributed to the increased active sites induced by multiple joint structures and enhanced biocompatibility originated from nitrogen dopant.  相似文献   

3.
Layered carbon fiber mats have been prepared by layer-by-layer (LBL) electrospinning of polyacrylonitrile onto thin natural cellulose paper and subsequent carbonization. The layered carbon fiber mat has been proved to be a promising microbial fuel cell anode for high density layered biofilm propagation and high bioelectrocatalytic anodic current density.  相似文献   

4.
Microbial fuel cells (MFC) provide a new opportunity for simultaneous electricity generation and waste treatment. An improvement in the anode capacity of MFCs is essential for their scale-up and commercialization. In this work we demonstrate, for the first time, that plasma-based ion implantation could be used as an effective approach to modify carbon paper as an anode for MFC to improve its electricity-generating capacity. After the N(+) ion implantation, a decreased charge-transfer resistance is achieved, which is attributed to the increased C-N bonds after N(+) ion implantation. In addition, the surface roughness and hydrophobicity are also changed, which favor microbial adhesion on the anode surface. The cyclic voltammetry results show that both the electrochemical activity and the electron transfer are enhanced remarkably, leading to better MFC performance compared to the control. Such a plasma surface modification technique provides an effective way to modify the electrode for enhancing MFC performance for power generation.  相似文献   

5.
An approach for improving the power generation of a dual-chamber microbial fuel cell by using a nanostructured polyaniline (PANI)-modified glassy carbon anode was investigated. Modification of the glassy carbon anode was achieved by the electrochemical polymerisation of aniline in 1 M H2SO4 solution. The MFC reactor showed power densities of 0.082 mW cm?2 and 0.031 mW cm?2 for the nano- and microstructured PANI anode, respectively. The results from electron microscopy scanning confirmed formation of the nanostructured PANI film on the anode surface and the results from electrochemical experiments confirmed that the electrochemical activity of the anode was significantly enhanced after modification by nanostructured PANI. Electrochemical impedance spectroscopic results proved that the charge transfer would be facilitated after anode modification with nanostructured PANI.  相似文献   

6.
研究发现微生物燃料电池从启动到稳定运行的过程中往往存在一种现象,就是在高电流密度下,微生物燃料电池的输出电压会出现逆转,从而限制了微生物燃料电池的规模化应用,以及它在污废水处理、脱盐等方面的功能.
  前期研究发现,微生物燃料电池的性能逆转现象与阳极材料的电容性能有关.电极材料的电容越大,越有利于微生物燃料电池的产电性能稳定,换言之,阳极材料电容不足导致产电性能逆转.但是超级电容活性炭的制作工艺繁琐,成本高,且导电性弱,不能满足微生物燃料电池的应用需求.炭黑的导电能力强、化学稳定性高、成本低,但作为微生物燃料电池的阳极则产生产电性能逆转现象.
  化学修饰(如酸、碱活化或者添加具有赝电容性质的金属氧化物等)可以提高材料的电容性能.低温条件(80 oC)下,对低电容材料—炭黑进行HNO3和KOH的化学活化处理,并在此基础上,进一步用5%Fe3O4修饰,采用辊压工艺,以质量分数为60%的聚四氟乙烯乳液为粘结剂,制作微生物燃料电池的阳极,与空气阴极构建单室微生物燃料电池系统.采用傅里叶变换红外光谱(FTIR)、比表面积测试、材料表面pH和X射线能量分析光谱(EDX)等手段表征炭黑活化前后的物理、化学性质;接触角润湿性测试表征活化前后电极表面的亲疏水性.电化学循环伏安法测试活化前后,电极的电子存储能力.
  与蒸馏水的pH相比较,材料表面pH分析表明炭黑材料经化学活化处理后,其表面pH无明显变化; FTIR和EDX测试表明化学活化处理使得炭黑表面引入含O(N)官能团;吸附-脱附曲线分析表明化学活化后,炭黑的比表面积减小,微孔与介孔的体积比增加;接触角测试表明炭黑阳极活化处理后,电极表面亲水性增加;循环伏安测试证实,化学活化后的炭黑阳极电容得到0.1–0.8 F/cm2的增长.结合燃料电池的产电性能测试,发现只有当炭黑阳极电容不小于1.1 F/cm2时,微生物燃料电池的产电逆转现象才会消失.炭黑阳极的化学活化方法为微生物燃料电池的性能稳定提供了一种简便、低成本的方法.  相似文献   

7.
Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells(MFCs). Nitrogen doping is an effective way for the modification of traditional carbon materials. In this work, heat treatment and melamine were used to modify carbon felts to enhance electrogenesis capacity of MFCs. The modified carbon felts were characterized using X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), atomic force microscopy(AFM)and malvern zeta potentiometer. Results show that the maximum power densities under heat treatment increase from 276.1 to 423.4 m W/m~2(700 °C) and 461.5 m W/m~2(1200 °C) and further increase to472.5 m W/m~2(700 °C) and 515.4 m W/m~2(1200 °C) with the co-carbonization modification of melamine.The heat treatment reduces the material resistivity, improves the zeta potential which is beneficial to microbial adsorption and electron transfer. The addition of melamine leads to the higher content of surface pyridinic and quaternary nitrogen and higher zeta potential. It is related to higher MFCs performance. Generally, the melamine modification at high temperature increases the feasibility of carbon felt as MFCs' s anode materials.  相似文献   

8.
构建了老龄垃圾渗滤液为底物的空气阴极型单室微生物燃料电池,以考察阳极不同改性方式对微生物燃料电池产电性能和对老龄垃圾渗滤液处理效果的影响。结果表明,碳毡阳极经过热处理、浓硝酸、酸性重铬酸钾、混酸的改性后,电池的最大输出功率密度分别提高了104%、241%、51%、181%,COD的去除率变化不大,但氨氮去除率分别增加了22.2%、21.8%、2.3%、47.3%。垃圾渗滤液pH值升高、电导率呈下降趋势。  相似文献   

9.
以双室微生物燃料电池为反应器,铁氰化钾为阴极液,研究污水处理厂活性污泥菌液和玉米秸秆水解液对MFC的产电性能的影响。结果表明,随着阳极中活性污泥菌液体积(1.5、3.0、4.5、6.0 mL)增加,MFC的产电量逐渐增加,当活性污泥的体积增加至7.5 mL时,产电量开始呈下降趋势;玉米秸秆水解液在底物中的浓度为0、10、15、20、30、40 g/L时,电池的稳定电压分别为54、157、248、208、170、146 mV。当阳极活性污泥菌液体积为6 mL、玉米秸秆水解液浓度为15 g/L时,微生物燃料电池的产电性能最佳,此时MFC的功率密度为54.6 mW/m2,内阻为496 Ω。同时,循环伏安曲线(C-V)和交流阻抗曲线(EIS)测试可知,MFC的电极过程由电荷传递和扩散过程共同控制,反应过程受电子传递控制。  相似文献   

10.
11.
The effect of some technological parameters (firing temperature, thickness of an interphase layer made of solid electrolyte Ce0.82Gd0.18O1.91 (GDC), the GDC electrolyte amount in nickel-cermet) on the electrochemical and electric properties of a nickel-cermet (Ni-GDC) anode intended for fuel cells with the La0.88Sr0.12Ga0.82Mg0.18O2.85 (LSGM) electrolyte is studied. The polarization resistance of such an electrode is shown to hardly depend on the thickness of the interphase layer (4.5–23.5 μm) and the GDC electrolyte amount in nickel-cermet and to increase with the anode firing temperature. It is established that the contact resistance is concentrated in cells with the developed nickel-cermet electrode at the GDC/LSGM interface. At a temperature of 700°C the developed anodes may ensure a current density of 1 A cm?2 at an overvoltage of less than 100 mV when using both moist hydrogen and a methane-oxygen mixture as the fuel.  相似文献   

12.
The objective of the work was to give some first insight into an engineering-oriented approach to MFC design by focusing on anode optimisation. The effect of various parameters was firstly investigated in half cell set-ups under well-controlled conditions. Microbial anodes were formed from soil leachate under polarisation at -0.2 V vs. SCE with different concentrations of substrate, salt and buffer. It was shown that non-turnover CV could be used to assess the electroactive maturity of the anodes during polarisation. This first phase resulted in the definition of a set of optimal parameter values. In the second phase, an optimal anode was formed in a half-cell under the defined optimal conditions. A numerical approach was then developed to calculate the theoretical maximum power that the anode could provide in an ideal MFC. The concept of "ideal MFC" introduced here allowed the theoretical maximum power to be calculated on the sole basis of the kinetic characteristics of the anode. Finally, a MFC designed in the aim of approaching such ideal conditions generated stable power densities of 6.0 W m(-2), which were among the highest values reported so far. The discrepancy between the theoretical maximum (8.9 W m(-2)) and the experimental results pointed out some limit due to the source of inoculum and suggested possible paths to improvement.  相似文献   

13.
This communication reports for the first time the direct utilisation of urine in MFCs for the production of electricity. Different conversion efficiencies were recorded, depending on the amount treated. Elements such as N, P, K can be locked into new biomass, thus removed from solution, resulting in recycling without environmental pollution.  相似文献   

14.
Single solid-oxide fuel cells (SOFCs) with a porous (36-41%) supporting Ni-cermet anode are manufactured and tested. The effect of the thickness of the supporting Ni-cermet anode on the electrochemical characteristics of single SOFCs is studied. It is shown that polarization losses on electrodes at the current density of 1.2 A/cm2 increase by about 2 times from 0.13 to 0.25 V at an increase in the thickness of the supporting Ni-cermet anode from 0.40 to 1.27 mm. The impedance spectroscopy method is used to identify relaxation processes responsible for the behavior of the fuel cell anode and cathode. It is found that a significant percentage of polarization losses on the anode is due to transport limitations in fuel supply to the three-phase nickel/electrolyte/gas phase interface and removal of the reaction products away from it.  相似文献   

15.
A new SOFC anode material based upon oxygen excess perovskite related phases has been synthesised. The material shows better electrochemical performance than other alternative new anodes and comparable performance to the state-of-art of the electrodes, Ni-YSZ cermets, under pure hydrogen. Furthermore, this material shows an enhanced performance under methane operation with high open circuit voltages, i.e. 1.2-1.4 V at 950 degrees C, without using steam excess. The effect of the anode configuration was tested in one and four layer configurations. The optimised electrode polarisation resistances were just 0.12 ohm cm(2) and 0.36 ohm cm(2), at 950 degrees C, in humidified H(2) and humidified CH(4), respectively. Power densities of 0.5 W cm(-2) and 0.35 W cm(-2) were obtained in the same conditions. A very low anodic overpotential of 100 mV at 1 A cm(-2) was obtained under humidified H(2) at 950 degrees C. Samples were tested for two days in reducing and oxidising conditions, alternating heating and cooling processes from 850 degrees C to 950 degrees C, showing stable electrode performance and open circuit voltages. The results show that the substituted strontium titanates are very promising anode materials for SOFC.  相似文献   

16.
Trifluoromethanesulfonic acid or triflate acid, chemical formula CF3SO3H, is regarded as one of the strongest acids and resembles Nafion® in structure. Erbium triflate, a lanthanum salt of triflate, is thermally stable. This paper reports data on the formation of membranes by the fixation of erbium triflate salts (ErTfO) into the Nafion structure. Five different loadings of ErTfO were used to fabricate ErTfO/Nafion composite membranes and these were characterized, extensively for possible use in direct alcohol fuel cells. The membranes were characterized using XRD, TGA, FTIR, and for mechanical strength, water uptake, ion exchange capacity, alcohol uptake, swelling, proton conductivity, alcohol permeability and oxygen stability. The ErTfO/Nafion composite membranes reduced alcohol permeability by 77–80%. The proton conductivity of 3% ErTfO/Nafion composite membranes was 38% higher than that of a pure cast Nafion membrane. The oxygen stability of the ErTfO/Nafion composite membranes was higher than pure cast Nafion. However, the mechanical strength of 7% and 9% ErTfO/Nafion was lower than that of pure cast Nafion. The composite membrane was chemically stable and has potential for use in direct alcohol fuel cells.  相似文献   

17.
The supply of cathode reactants in a passive direct methanol fuel cell (DMFC) relies on naturally breathing oxygen from ambient air. The successful operation of this type of passive fuel cell requires the overall mass transfer resistance of oxygen through the layered fuel cell structure to be minimized such that the voltage loss due to the oxygen concentration polarization can be reduced. In this work, we propose a new membrane electrode assembly (MEA), in which the conventional cathode gas diffusion layer (GDL) is eliminated while utilizing a porous metal structure for transporting oxygen and collecting current. We show theoretically that the new MEA enables a higher mass transfer rate of oxygen and thus better performance. The measured polarization and constant-current discharging behavior showed that the passive DMFC with the new MEA yielded better and much more stable performance than did the cell having the conventional MEA. The EIS spectrum analysis further demonstrated that the improved performance with the new MEA was attributed to the enhanced transport of oxygen as a result of the reduced mass transfer resistance in the fuel cell system.  相似文献   

18.
The paper reports the operation of a new-design microbial fuel cell using compost leachate as a substrate, oxygen/electrodeposited MnOx cathode and a new-anode concept with graphite modified by an iron/sulfur solid chemical catalyst which almost eliminates the starting delay time and gives very high current and power densities, I ~ 25 A m 3 at Pmax ~ 12 W m 3 or I ~ 3.8 A m 2 at Pmax ~ 1.8 W m 2.  相似文献   

19.
Entry of direct methanol fuel cells into the market requires anode catalyst with stable activity. This paper presents a novel method for stabilizing the activity by immobilizing silica on the catalytic PtRu nanoparticles. Characterization was performed by STEM-EDX, XRD, and ICP. The silica-immobilized PtRu nanoparticles showed high and stable activity toward methanol oxidation. The activity was maintained for 1000 h in sulfuric acidic solution, while the activity of the catalyst with "bare" PtRu nanoparticles decayed after 100 h, showing high durability of the silica-immobilized PtRu nanoparticles catalyst in quasi-anodic acidic environment.  相似文献   

20.
Novel types of CO tolerant electro-catalysts from Pt and organic metal complexes that are far superior to Pt-Ru and practically usable as anode catalysts in reformate gas fuel cells with 100 ppm CO tolerance have been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号