首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability constants of zirconium(IV) hydrolysis species have been measured at 15, 25, and 35 °C [in 1.0 mol-dm–3 (H,Na)ClO4] using both potentiometry and solvent extraction. In addition, the solubility of [Zr(OH)4(am)] has been investigated in a 1 mol-dm–3 (Na,H)(ClO4,OH) medium at 25 °C over a wide range of –log [H+] (0-15). The results indicate the presence of the monomeric species Zr(OH)3+, Zr(OH)2 2+, Zr(OH)3 +, and Zr(OH)4 0(aq) as well as the polymeric species Zr4(OH)8 8+ and Zr2(OH)6 2+. The solvent extraction measurements required the use of acetylacetone. As such, the stability constants of zirconium(IV) with acetylacetone were also measured using solvent extraction. All stability constants were found to be linear functions of the reciprocal of temperature (in kelvin) indicating that H o and S o are both independent of temperature (over the temperature range examined in the study). The results of the solubility experiments have shown four distinctly different solubility regions. In strongly acidic solutions, the solubility is controlled by the formation of polynuclear hydrolysis species in solution whereas in less acidic solution the formation of mononuclear hydrolysis species becomes dominant. The largest portion of the solubility curve is controlled by equilibrium with aqueous Zr(OH)4 0(aq) where the solubility is independent of the proton concentration. In alkaline solutions, the solubility increases due to formation of the zirconate ion. The middle region was used to determine the solubility constant (log *K s10) of Zr(OH)4(s). From the data in the alkaline region, a value of the stability of the zirconate ion has been determined. This is the first time that the possible evidence for the zirconate ion has been identified in aqueous solution that has previously been found only in the solid phase.  相似文献   

2.
Formation constants for the tribromide and pentabromide anions were measured by a vapor partitioning method from 5 to 80°C. The molal thermodynamic parameters for these respective species at 25°C are: K 3 –16.73, H o =–5.90 kJ-mol –1 , Cp o =–29 J-K –1 -mol –1 , and S o =3.6 J-K –1 -mol –1 ; K 5 =37.7, H o =–13.0 kJ-mol –1 , S o =–13.6 J-K –1 -mol –1 , with Cp o assumed zero. These results are used to reevaluate published emf results for the bromine/bromide couple.  相似文献   

3.
Thermodynamic ion-association constants for calcium, cobalt, zinc, and cadmium sulfates in aqueous solutions were determined by means of conductivity measurements at various temperatures between 0°C and 45°C. The standard Gibbs energy, enthalpy, and entropy for the reaction M 2+ +SO 4 2– M 2+ ·SO 4 2– (M=Ca, Co, Zn, and Cd) were calculated from the temperature dependence of the ion-association constants. The values obtained are as follows: G 298 o =–12.42 kJ-mole –1 , H o =6.11 kJ-mole –1 , and S 298 o =62.1 J- o K –1 -mole –1 for Ca 2+ ·SO 4 2– ; G 298 o =–12.84 kJ-mole –1 , H o =5.00 kJ-mole –1 , and S 298 o =59.8 J- o K –1 -mole–1 for Co 2+ ·SO 4 2– ; G 298 o =–12.65 kJ-mole –1 , H o =8.65 kJ-mole –1 , and S 298 o =71.4 J- o K –1 -mole –1 for Zn 2+ ·SO 4 2– ; G 298 o =–13.28 kJ-mole –1 , H o =8.39 kJ-mole –1 , and S 298 o =72.7 J- o K –1 -mole –1 for Cd 2+ ·SO 4 2– .  相似文献   

4.
The solubility, solubility product and the thermodynamic functions for the CeF3–H2O system have been measured using the radiometric, conductometric and potentiometric techniques. The radiometric values for the solubility and solubility product, the lowest and more acceptable for reasons cited in previous papers, are 3.14·10–5 M and 2.17·10–17 respectively. The enthalpy change measured by the conductometric method is almost twice as that obtained by potentiometric method due to abnormal conductances registered at higher temperatures. The average values for Ho and Go and So at 298 K are 53.0±17.4, 91.7±4.0 and –129.7±58.2 KJ·mol–1 respectively. The positive values for Ho and Go and the negative value for So are indicative of the low solubility of this salt in water. The stability constants for the mono- and difluoride complexes of Ce(III) have been determined potentiometrically using unsaturated solution mixtures of Ce(III) and F. These values for CeF+ and CeF 2 + are 997±98 and (1.03±0.44)·105, respectively. Studies on pH dependence of the solubility shows that the solubility reaches a minimum value at a pH of about 3.2.  相似文献   

5.
The thermodynamic characterization of the weakly complexed model system Sm3+-xylitol has been carried out. The standard Gibbs energy enthalpy, entropy, volume and heat capacity of complexation of Sm3+ by xylitol have been determined in water at 25°. The stability constant and the enthalpy change have been simultaneously determined by using a calorimetric method. The thermodynamic properties characterizing solely the specific interaction between the cation and the complexing sequence of hydroxyl groups of the ligand have been isolated. The stability constant and the volume of complexation have also been estimated from a similar treatment of the apparent molar volumes. It was found that the reaction between Sm3+ and the complexing site of xylitol in water is characterized by: K = 8.1, rGo = –5.2 kJ-mol–1, rHo = –13.7 kJ-mol–1, TrSo = –8.5 kJ-mol–1, rVo = 8.8 cm3-mol–1 and rC p o = 51 J-K–1-mol–1.  相似文献   

6.
The first and second dissociation constants of deuterio-o-phthalic acid in deuterium oxide have been determined by the emf method over the temperature range of 5 to 50°C. The pD values for potassium deuterium phthalate have been calculated from these two constants and experimentally verified. The thermodynamic properties for the dissociation of deuterio-o-phthalic acid have been evaluated. At 25°C, these values in the molality scale are: pK 1A =3.505, pK 2A =5.890, and pD=4.518. From K 1A and K 2A , respectively: G o =20.003, 33.582 kJ-mol–1; H o =2.851, 2.208 kJ-mol–1; S o =–76.7, –105.2 J-mol–1-K–1; and C p o =–52.7, –315.6 J-mol–1-K–1. The isotope effect is discussed.  相似文献   

7.
Complex formation of copper(II) with N,N-dimethylformamide(DMF) has been investigated calorimetrically in acetonitrile at 25°C. Calorimetric titration curves obtained are explained in terms of formation of [Cu(dmf) n ]2+ (n=1–4, 6) and their formation constants, enthalpies and entropies were determined. Formation of [Cu(dmf)5]2+ is uncertain. The stepwise enthalpies S 3 0 and entropies S n 0 at each consecutive step are all negative except for S 3 0 . The overall enthalpies of formation of [Cu(dmf)6]2+ is –(77.8±5.4) kJ-mol–1, which is compared with the enthalpy of transfer of copper(II) ion, H t o =–79.7 kJ-mol–1, from acetonitrile to DMF.  相似文献   

8.
Using flow microcalorimetry, the ion association reaction M2+(aq)+Fe(CN) 6 4– (aq)=MFe(CN) 6 2– (aq) (M=Ca, Mg) has been studied at 25°C over the ionic strength range 0.02 to 0.08 mol-dm–3. Analyses of the data to obtain Ho, the enthalpy change at infinite dilution, are described. The value obtained for Ho is sensitive to the kind of functions used to correct for non-ideal behavior.  相似文献   

9.
The second dissociation constants pK 2of the NH3 +charge center of the alanylpeptides, alanylglutamine (Ala–Gln), alanylleucine (Ala–Leu), alanylglycine (Ala–Gly), and DL-alanyl–DL-methionine (DL-Ala–DL-Met) were determined at ten temperatures in the range, 5–50°C. These pK 2values were calculated from the emf of cells containing buffer solutions of these dipeptides. A cell of the type described by Harned and Ehlers,(1)utilizing hydrogen and silver–silver bromide electrodes was used. The thermodynamic quantities, Ho, So, and Cp owere derived from the temperature coefficients of the dissociation constants. The pK 2values at 25°C, 8.2105 ( Ala–Gln), 8.2668 ( Ala–Leu), 8.2940 ( Ala–Gly), and 8.3054 ( DL-Ala–DL-Met). These values show that different substituent groups on the -carbon atom (which include polar and nonpolar groups), have a small effect on the dissociation of the NH3 +charge center. These compounds were also found to be suitable as buffers in the pH range(7–9). The thermodynamics of the solute–solvent interaction is interpreted in terms of the mixture model.(2)  相似文献   

10.
The extraction of thorium(IV) from nitric acid solutions by di-n-butyl sulfoxide (DBSO) in xylene has been investigated as a function of acid, extractant and the metal concentration. The effect of contact time and diverse ions on the extraction has been examined. Phosphate, fluoride, oxalate and perchlorate reduce the extraction to some extent. The extraction of other metal ions, especially impurities associated with thorium in ores, has been measured under optimised conditions selected for thorium extraction. Na(I), K(I), Ca(II), Sr(II), Mn(II), Fe(II), Ni(II), Zn(II), Pb(II), Al(III), Ti(IV) and Hf(IV) are not extracted. Among the stripping solutions employed for back-extraction, deionized water is found to be the best and more than 99% thorium can be back-extracted in three stages. The extracted species is supposed to be Th(NO3)4·2DBSO. The extraction is found to be almost independent of the thorium concentration in the range between 4.3·10–4–4.3·10–2M and inversely dependent upon the temperature. The values of thermodynamic functions H, G and S for extraction equilibrium have been evaluated to be –19.6±2.9 kJ·mole–1, –18.1±2.0 kJ·mole–1 and –5.0±2.9 J·mole–1·K–1, respectively.  相似文献   

11.
Protometric studies were performed in aqueous solutions at 25^C and 0.1 ,mol.dm−3 ionic strength (NaClO4) to determine the complexing abilities of eight (o-hydroxy-phenyl) mono- and di-methylenephosphonic acids (differently substituted by chromophoric or auxochromic groups) towards thorium(IV). The number, the nature of the species present in solution, their overall stability constants over a broad acidity range and their individual electronic spectra, as resolved by computation, have been determined by potentiometry and UV-visible spectrophotometry.The formation of 1:1 species, partially protonated MLHx and totally deprotonated [ML], as well as hydroxo species -- mononuclear ML(OH)x and dinuclear M2L(OH) x is reported with thorium(IV). The results show that the complexing power, which is not very different in the lanthanide series, is much higher for thorium(IV). The ratio Th4+/Eu3+ reaches eight log10 units with some of the ligands.  相似文献   

12.
The first and second molal dissociation quotients of oxalic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. The emf of oxalic acid-bioxalate solutions was measured relative to an HCl standard solution from 25 to 125°C over 25o intervals at nine ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and available literature data were treated in the all anionic form by a five-term equation that yielded the following thermodynamic quantities at infinite dilution and 25°C: logK1a=–1.277±0.010, H 1a o =–4.1±1.1 kJ-mol–1, S 1a o =38±4 J-K–1-mol–1, and C p,1a o =–168±41 J-K–1-mol–1. Similar measurements of the bioxalate-oxalate system were made at 25o intervals from 0 to 175°C at seven ionic strengths from 0.1 to 5.0m. A similar regression of the experimentally-derived and published equilibrium quotients using a seven-term equation yielded the following values at infinite dilution and 25°C: logK2a=–4.275±0.006, H 2a o =–6.8±0.5 kJ-mol–1, S 2a o =–105±2 J-K–1-mol–1, and C p,2a o =–261±12 J-K–1-mol–1.  相似文献   

13.
The interaction of thymidine, a nucleoside, with hydroxopentaaquarhodium(III), [Rh(H2O)5(OH)]2+ ion in aqueous medium is reported and the possible mode of binding is discussed. The kinetics of interaction between thymidine and [Rh(H2O)5OH]2+ has been studied spectrophotometrically as a function of [Rh(H2O)5OH2+], [thymidine], pH and temperature. The reaction has been monitored at 298 nm, the max of the substituted complex, and where the spectral difference between the reactant and product is a maximum. The reaction rate increases with [thymidine] and reaches a limiting value at a higher ligand concentration. From the experimental findings an associative interchange mechanism for the substitution process is suggested. The activation parameters (H=47.8 ± 5.7 kJ mol–1, S=–173 ± 17 J K–1 mol–1) supports our proposition. The negative G0 (–13.8 kJ mol–1) for the first equilibrium step also supports the spontaneous formation of the outer sphere association complex.  相似文献   

14.
The two thermodynamic dissociation constants of glycine at 11 temperatures from 5 to 55°C in 50 mass % methanol-water mixed solvent have been determined from precise emf measurements with hydrogen-silver bromide electrodes in cells without liquid junction. The first acidic dissociation constant (K 1)for the process HG+H++G± is expressed as a function ofT(oK) by the equation pK 1 = 2043.5/T – 9.6504 + 0.019308T. At 25°C, pK 1is 2.961 in the mixed solvent, as compared with 2.350 in water, with H°=1497 cal-mole–1, G°=4038 cal-mole–1, S°=–8.52 cal-°K–1-mole–1, and C p o =–53 cal-°K–1-mole–1. The second acidic dissociation constant (K 2)for the process G±H++G over the temperature range studied is given by the equation pK 2 = 3627.1/T – 7.2371 + 0.015587T. At 25°C, pK 2is 9.578 in MeOH–H2O as compared with 9.780 in water, whereas H° is 10,257 cal-mole–1, G° is 13,063 cal-mole–1, S° is –9.41 cal-°K–1-mole–1, and C p o is –43 cal-°K–1-mole–1. The protonated glycine becomes weaker in 50 mass % methanol-water, whereas the second dissociation process becomes stronger despite the lower dielectric constant of the mixed solvent (=56.3 at 25°C).  相似文献   

15.
The solubility and solubility product of erbium trifluoride in aqueous solution were measured using three different techniques. The more acceptable radiometric values for the solubility and solubility product are 1.98×10–5M and 3.5×10–18, respectively. The values for the thermodynamic functions, H 298 o , G 298 o and S 298 o for the dissolution of ErF3 and the stability constant for ErF2+ have also been measured.  相似文献   

16.
Thermodynamic acid dissociation constants were determined for phosphonoacetic acid (PAA) in aqueous solution at 25°C by coulometric titrations at different ionic strengths and extrapolation of the results to I=0. The respective values are pK12.0, pK2=5.11±0.04, and pK3=8.69±0.05. The enthalpy and entropy of dissociation for the second and the third dissociation steps, determined from the temperature dependence of pK's, are H 2 o =0.2±0.3 kcal-mole–1, S 2 o =22.6±0.9 e.u., H 3 o =1.3±0.4 kcal-mole–1, and S 3 o =11.7±0.4 e.u. Phosphorus-31 and carbon-13 NMR studies of PAA solutions as a function of pH gave the deprotonation sequence of the triacid. Acidity constants were also determined for phosphonoformic acid, 2-phosphonopropionic acid, and 3-phosphonopropionic acid at an ionic strenght of 0.05.To whom correspondence should be addressed.  相似文献   

17.
Summary Stability constants of complexes of aryl-bis-(5-hydroxy-3-methyl-1-phenyl-4-pyrazolyl) methane [ArBPyM] derivatives with thorium(IV) ions were determined by the potentiometric method at 30°C and an ionic strength of 0.1 mol·dm–3 (KNO3) in 75% (v/v) dioxane-water. The evaluation of the titration data indicated that four kinds of complexes ([ThL]2+, [ThLOH]+, [ThL 2], and [ThL(OH)2]2–) were formed. The formation constants for all [ThL]2+ and [ThL 2] complexes have been calculated to compare these values with those previously reported [1, 2] with Ln3+ and UO 2 2+ metal ions [2, 3]. The probable ligand-bonding sites of the complexes are proposed. In addition, the applicability of theHammett equation for the correlation of the stability constants of [Th(IV)-ArBPyM] complexes are discussed.
Stabilitätskonstanten von Thorium(IV)-Komplexen mit Aryl-bis-(5-hydroxy-3-methyl-1-phenyl-4-pyrazolyl)-methan-Liganden
Zusammenfassung Stabilitätskonstanten von Komplexen von Aryl-bis-(5-hydroxy-3-methyl-1-phenyl-4-pyrazolyl)-methan — Derivaten [ArBPyM] mit Thorium(IV) — Ionen wurden bei 30°C und einer Ionenstärke von 0.1 mol-dm–3 (KNO3) in 75% (v/v) Dioxan-Wasser potentiometrisch bestimmt. Die Auswertung der Titrationskurven zeigte, daß vier verschiedene Komplexe vorlagen ([ThL]2+, [ThLOH]+, [ThL 2] und [ThL(OH)2]2+). Die Bildungskonstanten aller [ThL]2+- und [ThL 2]-Komplexe wurden berechnet, um sie mit den früher für Ln3+- und UO 2 2+ -Ionen publizierten zu vergleichen. Potentielle Bindungsstellen der Komplexe für Liganden werden vorgeschlagen. Zusätzlich wird die Anwendbarkeit derHammet-Beziehung auf die Korrelation der Stabilitätskonstanten von [Th(IV)-ArBPyM] — Komplexen diskutiert.
  相似文献   

18.
Enthalpies of solution of thymine and uracil in water and in dimethylsulfoxide (DMSO) were measured calorimetrically in the temperature range 25–40°C. H s o at 25°C for thymine and uracil in water were found to be 23.1±0.5 and 29.5±0.3 kJ-mol–1, respectively. In DMSO, H s o were 7.9±0.1 and 10.2±0.1 kJ-mol–1, respectively. In aqueous solution C p o for the two nucleic acid bases were relatively large and positive with C p o of thymine being larger. Both transfer quantities H t o and C p,t o for the proceses H2ODMSO for the two nucleic acid bases were negative. It is proposed that, the differences in the values obtained for the two bases is due principally to increased order in the water adjacent to the methyl group in thymine.  相似文献   

19.
Apparent equilibrium constants and calorimetric enthalpies of reaction have been measured for the reaction L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + ammonia(aq) which is catalyzed by L-tryptophanase. High-pressure liquid-chromatography and microcalorimetery were used to perform these measurements. The equilibrium measurements were performed as a function of pH, temperature, and ionic strength. The results have been interpreted with a chemical equilibrium model to obtain thermodynamic quantities for the reference reaction: L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + NH 4 + (aq). At T=25°C and Im=O the results for this reaction are: Ko=(1.05±0.13)×10–4, G°=(22.71±0.33) kJ-mol–1, H°=(62.0±2.3) kJ-mol–1, and S°=(132±8) J-K–1-mol–1. These results have been used together with thermodynamic results from the literature to calculate standard Gibbs energies of formation, standard enthalpies of formation, standard molar entropies, standard molar heat capacities, and standard transformed formation properties for the substances participating in this reaction.Presented at the Symposium, 76th CSC Congress, Sherbrooke, Quebec, May 30–June 3, 1993, honoring Professor Donald Patterson on the occasion of his 65th birthday.  相似文献   

20.
Equilibrium constants K for reaction of the C-acid, 4-nitro/phenylnitromethane with 1,8-diazabicyclo [5.4.0] undec-7-ene have been determined in aprotic solvents over a range of temperature. Corresponding measurements have been made for the deuterated acid 4-NPNM-d2. Thermodynamic parameters K, Ho and So, for proton and for deuteron transfers are not very differet in a given solvent, but show a considerable solvent dependence. There is an increase in magnitude of K with increase in solvent dielectric constant, a finding which is consistent with formation of an ion-pair. The range of extent of exothermicity of the reaction is quite small, –40 to-65 kJ-mol–1, and the values of So (large, negative) indicate, in general, increasing solvent restriction by the product with increasing solvent polarity. A modest bathochromic solvatochromism of the product is observed as the dielectric constant increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号