首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the previous paper[7], the author presented a System of First-Order Differential Equations for the problem of axisynrm’trically loaded shells of revolution with small elastic. strains and arbitrarily large axial deflections, and a Method of Variable-Characteristic Nondimensionization with a Scale of Load Parameter. On this basis, by taking the weighted root-mean-square deviation of angular deflection from linearity as perturbation parameter, this paper pressents a perturbation system of nondimensional differential equations for the problem, thus transforms the geometrical nonlinear problem into several linear problems. This paper calculates these linear problems by means of the initial parameter method of numerical integration. The numerical results agree quite well with the experiments[4].  相似文献   

2.
根据柱壳理论,构造了一种柱壳曲条,本文结合柱壳曲条和平壳条元求解高层筒体结构的整体稳定及二阶位移。采用三次H erm ite插值函数模拟条元横截面的翘曲位移变化,能较好地反映筒体受力“剪切滞后”效应;采用一族能较好地逼近弯剪型变形曲线的正交多项式作基函数来描述位移沿竖向变化。用最小势能原理建立稳定及二阶位移分析方程。该方法适用于任意平面形状的高层建筑筒体结构及剪力墙结构的稳定及二阶位移分析。与其它方法相比,该方法具有精度高、通用性强、计算量小等优点。  相似文献   

3.
In this paper, a boundary element method is developed for the non-linear flexural–torsional dynamic analysis of beams of arbitrary, simply or multiply connected, constant cross section, undergoing moderately large deflections and twisting rotations under general boundary conditions, taking into account the effects of rotary and warping inertia. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse loading in both directions as well as to twisting and/or axial loading. Four boundary value problems are formulated with respect to the transverse displacements, to the axial displacement and to the angle of twist and solved using the Analog Equation Method, a BEM based method. Application of the boundary element technique leads to a system of non-linear coupled Differential–Algebraic Equations (DAE) of motion, which is solved iteratively using the Petzold–Gear Backward Differentiation Formula (BDF), a linear multistep method for differential equations coupled to algebraic equations. The geometric, inertia, torsion and warping constants are evaluated employing the Boundary Element Method. The proposed model takes into account, both the Wagner's coefficients and the shortening effect. Numerical examples are worked out to illustrate the efficiency, wherever possible the accuracy, the range of applications of the developed method as well as the influence of the non-linear effects to the response of the beam.  相似文献   

4.
本文用有限元线法对变截面的高层简体结构进行空间整体稳定和二阶分析。先把实际框筒结构分段连续化为正交各向异性折板结构;用有限元线法,通过有限条元半离散化,取结线上位移为基本未知函数,由势能驻值原理建立稳定和二阶分析的常微分方程组;由常微分方程求解器直接求解。  相似文献   

5.
范存旭 《力学学报》2007,39(5):704-707
提出球壳轴对称弯曲问题共轭二阶挠度微分方程并给出了初等函数解. 球壳微分方程是薄壳理论三大壳之一旋转壳的典型方程. 共轭二阶挠度微分方程是球 壳中微分方程形式最简单的, 是人们最喜爱的挠度微分方程. 挠度微分方程满足边 界条件非常简单, 使球壳的计算得到很大的简化.  相似文献   

6.
Applying the Galerkin procedure to the Donnell basic equations, reasonably accurate solutions are obtained for the postbuckling behavior of clamped circular cylindrical shells under axial compression. To make a distinct comparison with the previous experimental results, calculations are carried out for shells with the same elastic and geometric parameters and the relations between the waveform, axial shortening and maximum deflections with applied loads are clarified. The results here obtained are found to be in reasonable agreement with experimental ones throughout the regions with fairly large deformations.  相似文献   

7.
为简化正交各向异性加筋板屈曲分析,本文将筋条位移场用其所在位置的板的位移表达,建立加筋板总势能,通过离散位移场,利用最小势能原理,推导出基于里兹法的正交各向异性加筋板屈曲分析控制方程,采用Matlab进行求解.基于本文推导的方程对单筋和三筋加筋板在不同压剪比下的屈曲荷载和模态进行分析,得到与Abaqus基本一致的结果....  相似文献   

8.
In this paper, a boundary element solution is developed for the nonlinear flexural–torsional dynamic analysis of beams of arbitrary doubly symmetric variable cross section, undergoing moderate large displacements, and twisting rotations under general boundary conditions, taking into account the effect of rotary and warping inertia. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse loading in both directions and to twisting and/or axial loading. Four boundary-value problems are formulated with respect to the transverse displacements, to the axial displacement, and to the angle of twist and solved using the Analog Equation Method, a Boundary Element Method (BEM) based technique. Application of the boundary element technique yields a system of nonlinear coupled Differential–Algebraic Equations (DAE) of motion, which is solved iteratively using the Petzold–Gear Backward Differentiation Formula (BDF), a linear multistep method for differential equations coupled with algebraic equations. Numerical examples of great practical interest including wind turbine towers are worked out, while the influence of the nonlinear effects to the response of beams of variable cross section is investigated.  相似文献   

9.
The elastoplastic state of cylindrical shells with a circular hole is studied considering finite deflections. The material of the shells is isotropic and homogeneous; the load is axial tension. The distribution of stresses, strains, and displacements along the hole boundary and in the zone of their concentration is studied by solving a doubly nonlinear problem. The data obtained are compared with the solutions of the physically and geometrically nonlinear problems and a numerical solution of the linear elastic problem __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 101–109, July 2008.  相似文献   

10.
U型波纹管是现代管道系统中最常见的一种位移补偿器 ,它由环板和具有正、负Gauss曲率的半圆环壳组成 ,在管道所传输的介质的压力作用下会发生屈曲。其中环向屈曲最为复杂 ,精确的理论分析非常困难 ,有限元分析也不多见。作者在分析前人工作的基础上 ,以圆环壳段为单元 (特定的旋转壳段单元 ,能自动退化成环板单元 ) ,限于弹性范围和线性化特征值问题 ,对介质压力作用下U型波纹管及其相关结构 (圆环板、圆环壳、半圆环壳 )的环向屈曲问题进行了分析。考虑了结构屈曲前的弯曲 ,计及压力的二次势能 ,导出的应力刚度矩阵和载荷刚度矩阵是非对称的。全部工作分为三部分 :(Ⅰ )基本方程 ,环板的屈曲 ;(Ⅱ )圆环壳、半圆环壳的屈曲 ;(Ⅲ )波纹管平面失稳的机理。本文为第一部分 ,除推导公式外 ,对不同边界和不同内外径之比的环板在径向均匀压力作用下的环向屈曲进行了计算 (轴对称的径向屈曲作为特例得到 ) ,给出了前屈曲应力分布、临界载荷及相应的屈曲模态 ,并将临界压力的值与前人基于vonK偄rm偄n大挠度板的精确解进行了比较 ,吻合良好。  相似文献   

11.

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the effects of geometrical nonlinearity (finite displacement—small strain theory) and secondary twisting moment deformation. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are subjected to the most general axial and torsional (twisting and warping) boundary conditions. The resulting coupling effect between twisting and axial displacement components is also considered and a constant along the bar compressive axial load is induced so as to investigate the dynamic response at the (torsional) postbuckled state. The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural–torsional behavior. A coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an independent warping parameter is formulated. The resulting equations are further combined to yield a single partial differential equation with respect to the angle of twist. The problem is numerically solved employing the Analog Equation Method (AEM), a BEM based method, leading to a system of nonlinear Differential–Algebraic Equations (DAE). The main purpose of the present contribution is twofold: (i) comparison of both the governing differential equations and the numerical results of linear or nonlinear free or forced vibrations of bars ignoring or taking into account the secondary twisting moment deformation effect (STMDE) and (ii) numerical investigation of linear or nonlinear free vibrations of bars at torsional postbuckling configurations. Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever possible its accuracy.

  相似文献   

12.
The equations governing the equilibrium of a finitely deformed elastic solid are derived from the Principle of Minimum Potential Energy. The possibility of the deformation gradient and the stresses being discontinuous across certain surfaces in the body — “equilibrium shocks” — is allowed for. In addition to the equilibrium equations, natural boundary conditions and traction continuity condition, a supplementary jump condition which is to hold across the surface of discontinuity is derived. This condition is shown to imply that a stable equilibrium shock must necessarily be dissipation-free.  相似文献   

13.
Nonlinear behavior of deep orthotropic spherical shells under inward radial concentrated load is studied. The singular perturbation method is developed and applied to Reissner’s equations describing axially symmetric large deflections of thin shells of revolution. A small parameter proportional to the ratio of shell thickness to the sphere radius is used. The simple asymptotic formulas describing load–deflection diagrams, maximum bending and membrane stresses of the structure are derived. The influence of boundary conditions on the behavior of the shell by large deflections is considered. Obtained asymptotic solution is in close agreement with the experimental and numerical results and has the same accuracy (in the asymptotic meaning) as the given equations of nonlinear theory of thin shells.  相似文献   

14.
随着计算机技术的进步以及机器学习算法的进一步发展,深度学习方法逐渐被广泛引用于各行各业中。本文发展并比较了适应于工程计算的深度配点法与深度能量法并应用于求解薄板弯曲问题。深度配点法采用物理驱动的深度神经网络来,并将物理信息(偏微分方程强形式)引入到损失函数中,最终将求解薄板弯曲问题简化为优化问题。深度能量法则是采用系统总势能驱动的神经网络。根据最小势能原理,在所有的可能位移场中,真实位移场的总势能取最小值,因此我们可以使用总势能构造损失函数,从而求解薄板弯曲问题。对于边界条件,通过罚函数法将有约束最优化问题转化为求解无约束最优化问题。深度配点法与深度能量法的适用性基于神经网络的通用近似定理。由于物理信息跟总势能的引入,增加了神经网络训练的困难,为了解决这个问题,我们发展了两步优化器方法。数值结果表明,深度配点法与深度能量法很适合求解薄板弯曲问题,并且程序实现简单,实现了真正意义上的“无网格法”。  相似文献   

15.
We propose a nonlinear approach to the stability analysis of imperfect cylindrical shells under axial compression. The approach takes into account the initial deflections (imperfections) of the shell shape from cylindrical. A series of typical initial deflections is analyzed: local and longitudinal bulges (dents) and unilateral annular corrugations. A nonlinear stability problem is solved. The results are represented as plots of the nondimensional stress versus the nondimensional amplitude of initial deflections. It is shown that the capabilities of the nonlinear theory for estimating the critical stresses for thin shells have not been exhausted yet and that it could be used in future to explain some phenomena experimentally observed in shells  相似文献   

16.
IntroductionWhencompositecylindricalshellsareundertheactionofdynamicloading ,theymayfallindynamicbucklingordynamicinstability .Ifthedynamicloadissuddenlyapplied ,oritischanginginstantaneously ,suchasimpulsiveloading ,then ,dynamicbucklingwillhappenforthesh…  相似文献   

17.
The elastoplastic state of thin cylindrical shells with two circular holes under axial tension is analyzed considering finite deflections. The distributions of stresses along the contours of the holes and in the zone of their concentration are studied by solving doubly nonlinear boundary-value problems. The solution obtained is compared with the solutions that account for either physical nonlinearity (plastic deformations) and geometrical nonlinearity (finite deflections) alone and with a numerical solution of the linearly elastic problem. The stress-strain state near the two holes is analyzed depending on the distance between the holes and the nonlinear factors accounted for__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 5, pp. 52–57, May 2005.  相似文献   

18.
A large deformation theory for layered shells of arbitrarily varying thickness and using a piecewise smooth displacement field is developed. A system of layer coordinates is introduced which allows the results to be presented in a simple compact form analogous to the theory of monocoque shells.  相似文献   

19.
A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length subjected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the functionally graded shell.  相似文献   

20.
The critical strain of a cylindrical shell subjected to combined axial compression and internal pressure is computed under creep conditions. A method is proposed to determine values of the initial deflections by means of elastic shell test data for a creep analysis of shells. Data of an experimental investigation of the creep stability of shells are presented, which are compared with the results of the computation.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 109–116, September–October, 1974.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号