首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Several kinds of tea, camomile and herbal tea were analysed to determine natural and artificial radioactivity. The radionuclides were determined by alpha (210Po) and gamma (228Ac, 214Pb, 214Bi, 210Pb, 40K and 137Cs) spectrometry. 228Ac ranged between 0.6 and 9.0 Bq kg−1dry; 210Po between 1.90 and 36.1 Bq kg−1dry; 214Pb and 214Bi between 0.7 and 4.9 Bq kg−1dry; 210Pb between < 10.0 and 58.9 Bq kg−1dry; 40K between 463 and 936 Bq kg−1dry; 137Cs between < 0.3 and 2.6 Bq kg−1dry. The percentage of 210Po extraction in infusion was also determined; the arithmetical mean value of percentage of 210Po extraction resulted 20.7 ± 7.50.  相似文献   

2.
Reaction of trans-[PtClMe(SMe2)2] with the mono anionic ligands azide, bromide, cyanide, iodide and thiocyanate result in substitution of the chloro ligand as the first step. In contrast the neutral ligands pyridine, 4-Me-pyridine and thiourea substitute a SMe2 ligand in the first step as confirmed by 1H NMR spectroscopy and the kinetic data. Detailed kinetic studies were performed in methanol as solvent by use of conventional stopped-flow spectrophotometry. All processes follow the usual two-term rate law for square-planar substitutions, kobs = k1 + k2[Y] (where k1 = kMeOH[MeOH]), with k1 = 0.088 ± 0.004 s−1 and k2 = 1.18 ± 0.13, 3.8 ± 0.3, 17.8 ± 1.3, 34.9 ± 1.4, 75.3 ± 1.1 mol−1 dm3 s−1 for Y = N3, Br, CN, I and SCN respectively at 298 K. The reactions with the neutral ligands proceed without an appreciable intercept with k2 = 5.1 ± 0.3, 15.3 ± 1.8 and 195 ± 3 mol−1 dm3 s−1 for Y = pyridine, 4-Me-pyridine and thiourea, respectively, at 298 K. Activation parameters for MeOH, , Br, CN, I, SCN, and Tu are ΔH = 47.1 ± 1.6, 49.8 ± 0.6, 39 ± 3, 32 ± 8, 39 ± 5, 34 ± 4 and 31 ± 3 kJ mol−1 and ΔS = −107 ± 5, −77 ± 2, −104 ± 9,−113 ± 28, −85 ± 18, −94 ± 14 and −97 ± 10 J K−1 mol−1, respectively. Recalculation of k1 to second-order units gives the following sequence of nucleophilicity: (1:13:42:57:170:200:390:840:2170) at 298 K. Variation of the leaving group in the reaction between trans-[PtXMe(SMe2)2] and SCN follows the same rate law as stated above with k2 = 75.3 ± 1.1, 236 ± 4 and 442 ± 5 mol−1 dm3 s−1 for X = Cl, I and N3, respectively, at 298 K. The corresponding activation parameters were determined as ΔH = 34 ± 4, 32 ± 2 and 39.3 ± 1.7 kJ mol−1 and ΔS = −94 ± 14, −86 ± 8 and −68 ± 6 J K−1 mol−1. All the kinetic measurements indicate the usual associate mode of activation for square planar substitution reactions as supported by large negative entropies of activation, a significant dependence of the reaction rate on different entering nucleophiles and a linear free energy relationship.  相似文献   

3.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

4.
Specific heat capacities (Cp) of polycrystalline samples of BaCeO3 and BaZrO3 have been measured from about 1.6 K up to room temperature by means of adiabatic calorimetry. We provide corrected experimental data for the heat capacity of BaCeO3 in the range T < 10 K and, for the first time, contribute experimental data below 53 K for BaZrO3. Applying Debye's T3-law for T → 0 K, thermodynamic functions as molar entropy and enthalpy are derived by integration. We obtain Cp = 114.8 (±1.0) J mol−1 K−1, S° = 145.8 (±0.7) J mol−1 K−1 for BaCeO3 and Cp = 107.0 (±1.0) J mol−1 K−1, S° = 125.5 (±0.6) J mol−1 K−1 for BaZrO3 at 298.15 K. These results are in overall agreement with previously reported studies but slightly deviating, in both cases. Evaluations of Cp(T) yield Debye temperatures and identify deviations from the simple Debye-theory due to extra vibrational modes as well as anharmonicity. The anharmonicity turns out to be more pronounced at elevated temperatures for BaCeO3. The characteristic Debye temperatures determined at T = 0 K are Θ0 = 365 (±6) K for BaCeO3 and Θ0 = 402 (±9) K for BaZrO3.  相似文献   

5.
Nitrogen and hydrogen isotope effects for the reaction of N-tert-butyl-P-phenylphosphonamidothioic acid 1 with alcohols (methanol, butanol, iso-propanol, tert-butanol) were measured in dichloromethane at 30 °C. The observed nitrogen isotope effect k14/k15 is only slightly sensitive to a steric hindrance of the alcohol [1.0070 ± 0.0002 (MeOH), 1.0074 ± 0.0004 (BuOH), 1.0062 ± 0.0004 (PriOH), 1.0087 ± 0.0007 (ButOH)]. The pre-equilibrium step, with proton transfer from oxygen to nitrogen was proved by the inverse hydrogen effect kROH/kROD[0.778 ± 0.052 (MeOH), 0.863 ± 0.063 (BuOH), 0.883 ± 0.080 (PriOH), 0.746 ± 0.084 (ButOH)]. The experimental values are consistent with theoretical results of semiempirical calculations on PM3 level for an elimination-addition mechanism and metathiophosphonate PhPSO intermediacy. For the reaction with methanol the addition-elimination mechanism is also possible.  相似文献   

6.
In this article, we present a systematic study on IgG and Fab fragment of anti-IgG molecules using fluorescence auto- and cross-correlation spectroscopy to investigate their diffusion characteristics, binding kinetics, and the effect of small organic molecule, urea on their binding. Through our analysis, we found that the diffusion coefficient for IgG and Fab fragment of anti-IgG molecules were 37 ± 2 μm2 s−1 and 56 ± 2 μm2 s−1, respectively. From the binding kinetics study, the respective forward (ka) and backward (kd) reaction rates were (5.25 ± 0.25) × 106 M−1 s−1 and 0.08 ± 0.005 s−1, respectively and the corresponding dissociation binding constant (KD) was 15 ± 2 nM. We also found that urea inhibits the binding of these molecules at 4 M concentration due to denaturation.  相似文献   

7.
In this work we calculated the radioactivity concentrations of the natural radioactive nuclides 238U, 232Th, 226Ra and 40K for 10 commercial samples collected from 10 different companies which are used in the construction of Yemeni buildings. Gamma ray spectroscopy was used to analyze the samples and the concentrations of radioisotopes were determined using a hyper-pure germanium (HPGe) detector in Bq/kg dry-weight. The average concentrations of 238U, 232Th, 226Ra and 40K were found to be 131.4, 83.55, 131.88 and 400.7 Bq/kg respectively. Different hazard indices were also determined. The results showed that the average radium equivalent activity (Raeq), the absorbed dose rate (Dr), the annual effective dose equivalent (AEDE), the external hazard index (Hex) and representation level index (Iγ) were: 307.52 Bq/kg, 139.31 nGy/h, 1.40 mSv/yr, 0.83 and 2.15 respectively. The mean value of (Raeq) obtained in this study is in good agreement with that of the international value while the mean values of the other indices are found to be higher than the international reference values. The measured activity concentrations for these radionuclide were compared with the reported data obtained from similar materials used in other countries.  相似文献   

8.
The beach placer deposit at Chhatrapur coast of Orissa state, southeastern coast of India, has a significant concentration of radiogenic heavy minerals. The average activity concentrations of radioactive elements such as 232Th, 238U and 40K were measured by gamma ray spectrometry using a HPGe detector, and found to be 2650±50, 400±30 and 120±30 Bq/kg, respectively, for the bulk sand samples. The activity concentrations in monazite and zircon sands are found to be 305,000±2000 and 2000±150 Bq/kg for the 232Th and 21,500±300 and 3450±250 Bq/kg for the 238U. Electron probe microanalysis results of monazite sands show the average ThO2 and UO3 concentrations to be 10.42 wt.%, and 0.32 wt.%, respectively. The major contributors for the enhanced level of radioactivity are monazite and zircon sands. These heavy mineral sands were derived from the nearby source areas such as Eastern Ghats Group of rocks.  相似文献   

9.
This article describes the preparation of multi-walled carbon nanotube—chalcogenide glass composite by direct synthesis and the melt-quenching method. The carbon nanotubes—chalcogenide glass composite was characterized by high-resolution transmission electron microscopy (HRTEM), TEM/energy-dispersive X-ray spectroscopy, low energy electron excited X-ray spectroscopy, Raman spectroscopy, spectroscopic ellipsometry, microhardness, and impedance spectroscopy. CNTs-AgAsS2 glass composite possess highly increased ionic conductivity, from σ25 °C=4.38±0.0438×10−6 to σ25 °C=6.57±0.0657×10−6 S cm−1 and decreased refractive index from n=2.652 to 2.631 at the wavelength λ=1.55 μm.  相似文献   

10.
The standard molar heat capacity C°p,m of adenine(cr) has been measured using adiabatic calorimetry over the range 6<(T/K)<310 and the results used to derive thermodynamic functions for adenine(cr) at smoothed temperatures. At T=298.15 K, C°p,m=(142.67±0.29) J · K−1 · mol−1 and the third law entropy S°m=(145.62±0.29) J · K−1 · mol−1. The standard molar Gibbs free energy of formation ΔfG°m at T=298.15 K for crystalline adenine was calculated, using the standard molar enthalpy of formation for the compound and entropies of the elements from the literature, and found to be ΔfG°m=(301.4±1.0) kJ · mol−1. The results were combined with solution calorimetry and solubility measurements from the literature to yield revised values for the standard molar thermodynamic properties of aqueous adenine at T=298.15 K: ΔfG°m=(313.4±1.0) kJ · mol−1, ΔfH°m=(129.5±1.4) kJ · mol−1, and Sm°=(217.68±0.44) J · K−1 · mol−1.  相似文献   

11.
Thermal behavior, relative stability, and enthalpy of formation of α (pink phase), β (blue phase), and red NaCoPO4 are studied by differential scanning calorimetry, X-ray diffraction, and high-temperature oxide melt drop solution calorimetry. Red NaCoPO4 with cobalt in trigonal bipyramidal coordination is metastable, irreversibly changing to α NaCoPO4 at 827 K with an enthalpy of phase transition of −17.4±6.9 kJ mol−1. α NaCoPO4 with cobalt in octahedral coordination is the most stable phase at room temperature. It undergoes a reversible phase transition to the β phase (cobalt in tetrahedra) at 1006 K with an enthalpy of phase transition of 17.6±1.3 kJ mol−1. Enthalpy of formation from oxides of α, β, and red NaCoPO4 are −349.7±2.3, −332.1±2.5, and −332.3±7.2 kJ mol−1; standard enthalpy of formation of α, β, and red NaCoPO4 are −1547.5±2.7, −1529.9±2.8, and −1530.0±7.3 kJ mol−1, respectively. The more exothermic enthalpy of formation from oxides of β NaCoPO4 compared to a structurally related aluminosilicate, NaAlSiO4 nepheline, results from the stronger acid-base interaction of oxides in β NaCoPO4 (Na2O, CoO, P2O5) than in NaAlSiO4 nepheline (Na2O, Al2O3, SiO2).  相似文献   

12.
Samples belonging to two species of lichen and one of moss collected on the Antarctic seashore (King George Island, Deception, Antarctic Peninsula) were analysed for gamma-emitters using HPGe gamma-spectrometry, and for alpha-emitters using alpha-spectrometry with silicon detectors. Observed 137Cs activities show large variations: from 4.1±0.4 to 74±3 Bq/kg. Total activity of 210Pb changed from <2 to 125±35 Bq/kg. The 2391240Pu activity ranged from 0.07±0.02 to 2.95±0.16 Bq/kg. The activity of 238Pu ranged from <0.02 to 0.64±0.04 Bq/kg. Maximum 238U and 234U activity was 7 Bq/kg, respectively, and 0.3 Bq/kg for 235U, whereas minimum activities were below 0.5 Bq/kg for 234U and 238U and about 0.02 Bq/kg for 235U. The 235U to 238U activity ratio for most of the samples was natural. Thorium activities were about two times lower than those for uranium. The activities of 147Sm ranged from 0.014±0.002 to 1.0±0.2 Bq/kg. One sample had relatively high activity of 241Am: 3.38±0.11 Bq/kg, another did not exceeded 1 Bq/kg. Observed activity ratios confirmed differences between mosses and lichen accumulation properties for radionuclides. Lichens are more selective for plutonium accumulation. Some radiocesium and probably also americium can be leached from them.  相似文献   

13.
The free radical scavenging activity of 42 Spanish commercial wines was determined using the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+). The ABTS+ radical was generated enzymatically using a horseradish peroxidase and hydrogen peroxide. The presence of wine phenolic compounds caused the absorbance of the radical to decay at 414 nm. The measurement conditions were optimised. The total phenolic content of wines ranged from 1262 to 2389 mg l−1 for red wines and 70 to 407 mg l−1 for white wines, expressed as gallic acid equivalents. The phenolic content of Sherry wines was similar to that of white wines. Optimum dilutions for white and Sherry wines were set up as a function of their total phenolic content (for total phenol index, TPI<300 mg gallic acid per liter, dilution 2.5:10 to 5:10; for TPI>300 mg gallic acid per liter, dilution 1:10 to 3:10). Red wines absorb at the wavelength of measurement and dilutions between 0.35:10 and 0.1:10 are advisable. Reaction kinetics were also monitored and the antioxidant activity, expressed as Trolox Equivalent Antioxidant Capacity (TEAC), was determined at 2 and 15 min of reaction. The mean values for TEAC2 min were 5.01±1.40 mM for red wines, 0.46±0.32 mM for white wines and 0.26±0.19 mM for Sherry wines. At 15 min, mean values were 6.93±2.41 mM for red wines, 0.67±0.47 mM for white wines and 0.26±0.19 mM for Sherry wines. The correlation coefficients were better at 2 min (r=0.9012) than at 15 min (r=0.8462) when compared with TPI. Hence, TEAC2 min seems to be a more appropriate measure.  相似文献   

14.
A natural smectite clay sample from Serra de Maicuru, Pará State, Brazil, had aluminum and zirconium polyoxycations inserted within the interlayer space. The precursor and pillarized smectites were organofunctionalized with the silyating agent 3-mercaptopropyltrimethoxysilane. The basal spacing of 1.47 nm for natural clay increased to 2.58 and 2.63 nm, for pillared aluminum, SAl/SH, and zirconium, SZr/SH, and increases in the surface area from 44 to 583 and 585 m2 g−1, respectively. These chemically immobilized clay samples adsorb divalent copper and cobalt cations from aqueous solutions of pH 5.0 at 298±1 K. The Langmuir, Redlich-Peterson and Toth adsorption isotherm models have been applied to fit the experimental data with a nonlinear approach. From the cation/basic center interactions for each smectite at the solid-liquid interface, by using van’t Hoff methodology, the equilibrium constant and exothermic thermal effects were calculated. By considering the net interactive number of moles for each cation and the equilibrium constant, the enthalpy, ΔintH0 (−9.2±0.2 to −10.2±0.2 kJ mol−1) and negative Gibbs free energy, ΔintG0 (−23.9±0.1 to −28.7±0.1 kJ mol−1) were calculated. These values enabled the positive entropy, ΔintS0 (51.3±0.3 to 55.0±0.3 JK−1 mol−1) determination. The cation-sulfur interactive process is spontaneous in nature, reflecting the favorable enthalpic and entropic results. The kinetics of adsorption demonstrated that the fit is in agreement with a second-order model reaction with rate constant k2, varying from 4.8×10−2 to 15.0×10−2 and 3.9×10−2 to 12.2×10−2 mmol−1 min−1 for copper and cobalt, respectively.  相似文献   

15.
Bakir M  Green O  Gyles C  Mangaro B  Porter R 《Talanta》2004,62(4):781-789
The compound di-2-thienyl ketone p-nitrophenylhydrazone (DSKNPH) melting point 168-170 °C was isolated in good yield from the reaction between di-2-thienyl ketone (DSK) and p-nitrophenylhydrazine in refluxing ethanol containing a few drop of concentrated HCl. Nuclear magnetic resonance studies on DSKNPH in non-aqueous solvents revealed strong solvent and temperature dependence due to solvent-solute interactions. Optical measurements on DSKNPH in DMSO in the presence and absence of KPF6 gave extinction coefficients of 83,300±2000 and 25,600±2000 M−1 cm−1 at 612 and 427 nm at 295 K. In CH2Cl2, extinction coefficient of 34,000±2000 M−1 cm−1 was calculated at 422 nm. When DMSO solutions of DSKNPH were allowed to interact with DMSO solutions of NaBH4 the low energy electronic state becomes favorable and when DMSO solutions of DSPKNPH where allowed to interact with DMSO solutions of KPF6 or NaBF4, the high energy electronic state becomes favorable. The reversible BH4/BF4 interconversion points to physical interactions between these species and DSKNPH and hints to the possible use of DSKNPH as a spectrophotometric sensor for a variety of physical and chemical stimuli. Thermo-optical measurements on DSKNPH in DMSO confirmed the reversible interconversion between the high and low energy electronic states of DSKNPH and allowed for the calculations of the thermodynamic activation parameters of DSKNPH. Changes in enthalpy (ΔH) of +57.67±4.20; 27.15±0.90 kJ mol−1, entropy (ΔS) of +160±12.88; 83±2.91 J mol−1 and free energy (ΔG) of −8.52±0.40; 2.66±0.25 kJ mol−1 were calculated at 295 K in the absence and presence of NaBH4, respectively. Manipulation of the equilibrium distribution of the high and low energy electronic states of DSKNPH allowed for the use of these systems (DSKNPH and surrounding solvent molecules) as molecular sensors for group I and II metal ions. Group I and II metal ions in concentrations as low as 1.00×10−5 M can be detected and determined using DSKNPH in DMSO.  相似文献   

16.
The dependence of Th recovery on hydrofluoric acid (HF) concentration in nitric acid (HNO3) solutions (1–5 mol/dm3) containing 1 × 10−6 mol/dm3 of Th and various concentrations of HF and the elution behavior were studied using a commercially available UTEVA (for uranium and tetravalent actinide) resin column. Thorium recovery decreased with an increase in HF concentration in the sample solutions. The concentration of HF at which Th recovery started to decrease was ∼1 × 10−4 mol/dm3 in 1 mol/dm3 HNO3 solution, ∼1 × 10−3 mol/dm3 in 3 mol/dm3 HNO3 solution, and ∼1 × 10−2 mol/dm3 in 5 mol/dm3 HNO3 solution. When Al(NO3)3 (0.2 mol/dm3) or Fe(NO3)3 (0.6 mol/dm3) was added as a masking agent for F to the Th solution containing 1 × 10−1 mol/dm3 HF and 1 mol/dm3 HNO3, Th recovery improved from 1.4 ± 0.3% to 95 ± 5% or 93 ± 3%. Effective extraction of Th using UTEVA resin was achieved by selecting the concentration of HNO3 and/or adding masking agents such as Al(NO3)3 according to the concentration of HF in the sample solution.  相似文献   

17.
Copolymerization of an excess of methyl methacrylate (MMA) relative to 2-hydroxyethyl methacrylate (HEMA) was carried out in toluene at 80 °C according to both conventional and controlled Ni-mediated radical polymerizations. Reactivity ratios were derived from the copolymerization kinetics using the Jaacks method for MMA and integrated conversion equation for HEMA (rMMA = 0.62 ± 0.04; rHEMA = 2.03 ± 0.74). Poly(ethylene glycol) α-methyl ether, ω-methacrylate (PEGMA, Mn = 475 g mol−1) was substituted for HEMA in the copolymerization experiments and reactivity ratios were also determined (rMMA = 0.75 ± 0.07; rPEGMA ∼ 1.33). Both the functionalized comonomers were consumed more rapidly than MMA indicating the preferred formation of heterogeneous bottle-brush copolymer structures with bristles constituted by the hydrophilic (macro)monomers. Reactivity ratios for nickel-mediated living radical polymerization were comparable with those obtained by conventional free radical copolymerization. Interactions between functional monomers and the catalyst (NiBr2(PPh3)2) were observed by 1H NMR spectroscopy.  相似文献   

18.
Hydroboration reactions of 1-octene and 1-hexyne with H2BBr·SMe2 in CH2Cl2 were studied as a function of concentration and temperature, using 11B NMR spectroscopy. The reactions exhibited saturation kinetics. The rate of dissociation of dimethyl sulfide from boron at 25 °C was found to be (7.36 ± 0.59 and 7.32 ± 0.90) × 10−3 s−1 for 1-octene and 1-hexyne, respectively. The second order rate constants, k2, for hydroboration worked out to be 7.00 ± 0.81 M s−1 and 7.03 ± 0.70 M s−1, while the overall composite second order rate constants, k K, were (3.30 ± 0.43 and 3.10 ± 0.37) × 10−2 M s−1, respectively at 25 °C. The entropy and enthalpy values were found to be large and positive for k1, whilst for k2 these were large and negative, with small values for enthalpies. This is indicative of a limiting dissociative (D) for the dissociation of Me2S and associative mechanism (A) for the hydroboration process. The overall activation parameters, ΔH and ΔS, were found to be 98 ± 2 kJ mol−1 and +56 ± 7 J K−1 mol−1 for 1-octene whilst, in the case of 1-hexyne these were found out to be 117 ± 7 kJ mol−1 and +119 ± 24 J K−1 mol−1, respectively. When comparing the kinetic data between H2BBr·SMe2 and HBBr2·SMe2, the results showed that the rate of dissociation of Me2S from H2BBr·SMe2 is on average 34 times faster than it is in the case of HBBr2·SMe2. Similarly, the rate of hydroboration with H2BBr·SMe2 was found to be on average 11 times faster than it is with HBBr2·SMe2. It is also clear that by replacing a hydrogen substituent with a bromine atom in the case of H2BBr·SMe2 the mechanism for the overall process changes from limiting dissociative (D) to interchange associative (Ia).  相似文献   

19.
In vitro degradation of poly(ethyl glyoxylate) (PEtG), a functionalised polyacetal, was investigated. First, the thermodynamic polymerization parameters and the ceiling temperature (Tc) were determined (ΔHp = 28 ± 3 kJ mol−1, ΔSp = 98 ± 7 J mol−1 K−1, Tc = 310 ± 4 K). Secondly, PEtG hydrolysis was investigated using potentiometry, weight loss measurements, SEC and 1H NMR. The results show that PEtG is stable for at least 7 days in aqueous media. Then degradation occurs and releases ethanol and glyoxylic acid hydrate as final products. A scheme for the degradation mechanism involving chain scission and ester hydrolysis is proposed.  相似文献   

20.
Biphen(OPi-Pr) and (COD)PtCl2 give Biphen(OPi-Pr)PtCl2 which upon treating with ethyl Grignard forms Biphen(OPi-Pr)PtEt2. The thermal decomposition of Biphen(OPi-Pr)PtEt2 was investigated in the temperature range of 353-383 K. The clean and quantitative formation of the Pt(Ethene) adduct was observed. X-ray structures of a molecule in the solid state of all three reaction products and two further related complexes with phenyl fingers instead of i-Pr have been determined. For the complexes with i-Pr fingers a decisive deviation from a square plane is observed in contrast to the complexes with phenyl fingers. The P-Pt-P angle increases from about 95° in Biphen(OPi-Pr)PtCl2 to about 120° in Biphen(OPi-Pr)Pt(Ethene), forcing the bridging C-C single bond of the biphenyl fragment as near as 4.17 Å to the Pt center. No through-space coupling between the bridging C atoms and the Pt center could be observed in 13C NMR spectroscopy. No bond lengthening of the bridging C-C single bond in the biphenyl fragment was observed in Biphen(OPi-Pr)Pt(Ethene) in comparison to the precursor complexes. The thermal decomposition of Biphen(OPi-Pr)PtEt2 can be described by a first-order kinetic and the activation parameters were determined (temperature range: 353-383 K; ΔH = 173.8 ± 16.2 kJ/mol and ΔS = 104.7 ± 44.1 J/(mol K)). The reaction kinetics were also measured for perdeuterated ethyl groups yielding in a kinetic isotopic effect of 1.56 ± 0.14 which was almost temperature-independent. Selective deuteration at α and β position of the ethyl group, respectively, showed that β-H elimination takes place fast in comparison to the complete thermolysis. In the temperature range of 333-353 K only a scrambling of the deuterium atoms was found without further decomposition (temperature range: 333-353 K; ΔscramH = 76.1 ± 15.2 kJ/mol, ΔscramS = −80.7 ± 45.5 J/(mol K) for Biphen(OPi-Pr)PtEt2-d6). The ethene is not lost during the scrambling process. The scrambling process is connected with a primary KIE decisively larger than 1.56. Biphen(OPi-Pr)Pt(Ethene) exchanges the coordinated ethene with ethene in solution as proven by labeling experiments. Both a dissociative and an associative mechanism could be shown to take place as ethene exchange reaction by means of VT1H NMR spectroscopy via line shape analysis (temperature range: 333-373 K; ΔassH = 26.9 ± 29.6 kJ/mol, ΔassS = −148.0 ± 87.5 J/(mol K), ΔdissH = 86.0 ± 6.5 kJ/mol, ΔdissS = 5.4 ± 17.8 J/(mol K)). The Pt(0) complex formed during the dissociative loss of ethene activates several substrates among them: O2, H2, H2SiPh2 via Si-H activation, MeI presumably via forming a cationic methyl adduct and ethane via C-H activation but it was proven that the bridging C-C single bond of the biphenyl fragment is not even temporarily broken. The materials were characterized by means of 1H NMR, 13C NMR, 31P NMR, 195Pt NMR, EA, MS, IR, X-ray analysis and polarimetric measurement where necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号