首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the synchronization of three dimensional chaotic systems by extending our previous method for chaos stabilization, and proposes a novel simple adaptive feedback controller for chaos synchronization. In comparison with previous methods, the present controller contains single state feedback. To our knowledge, the above controller is the simplest control scheme for synchronizing the three dimensional chaotic systems. The results are validated using numerical simulations.  相似文献   

2.
This paper addresses the problem of global finite-time synchronization of two different dimensional chaotic systems. Firstly, the definition of global finite-time synchronization of different dimensional chaotic systems are introduced. Based on the finite-time stability methods, the controller is designed such that the chaotic systems are globally synchronized in a finite time. Then, some uncertain parameters are adopted in the chaotic systems, new control law and dynamical parameter estimation are proposed to guarantee that the global finite-time synchronization can be obtained. By considering a dynamical parameter designed in the controller, the adaptive updated controller is also designed to achieve the desired results. At last, the results of two different dimensional chaotic systems are also extended to two different dimensional networked chaotic systems. Finally, three numerical examples are given to verify the validity of the proposed methods.  相似文献   

3.
This paper is concerned with finite-time stabilization of hyper-chaotic Lorenz system families. Based on the finite-time stability theory, a novel adaptive control technique is presented to achieve finite-time stabilization for hyper-chaotic system. The controller is simple and easy to be implemented, and can stabilize almost all well known high-dimensional chaotic systems. Simulation results for hyper-chaotic Lorenz system, Chua’s oscillator, Rössler system are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

4.
This works is concerned with the finite-time optimal stabilization problem for a class of switched non-strict-feedback nonlinear systems whose powers are possibly different positive odd rational numbers in the sense the powers of each subsystem might differ from others. It is well known that high-order nonlinear systems are intrinsically challenging as feedback linearization and backstepping method successfully developed for low-order systems fail to work. To this purpose, the nested saturation homogeneous controller is constructively devised to achieve global finite-time stability. Furthermore, the corresponding design parameters are optimized by minimizing a well-defined cost function, and thus an optimal controller being independent of switching signals is obtained. Simulation results are eventually provided to validate the effectiveness of the proposed control scheme.  相似文献   

5.
In this paper, the problem of finite-time chaos synchronization between two different chaotic systems with fully unknown parameters is investigated. First, a new nonsingular terminal sliding surface is introduced and its finite-time convergence to the zero equilibrium is proved. Then, appropriate adaptive laws are derived to tackle the unknown parameters of the systems. Afterwards, based on the adaptive laws and finite-time control idea, an adaptive sliding mode controller is proposed to ensure the occurrence of the sliding motion in a given finite time. It is mathematically proved that the introduced sliding mode technique has finite-time convergence and stability in both reaching and sliding mode phases. Finally, some numerical simulations are presented to demonstrate the applicability and effectiveness of the proposed technique.  相似文献   

6.
This paper addresses the problem of adaptive stabilization of uncertain unified chaotic systems with nonlinear input in the sector form. A novel representation of nonlinear input function, that is, a linear input with bounded time-varying coefficient, is firstly established. Then, an adaptive control scheme is proposed based on the new nonlinear input model. By using Barbalat’s lemma, the asymptotic stability of the closed-loop system is proved in spite of system uncertainties, external disturbance and input nonlinearity. One of the advantages of the proposed design method is that the prior knowledge on the plant parameter, the bound parameters of the uncertainties and the slope parameters inside the sector nonlinearity is not required. Finally, numerical simulations are performed to verify the analytical results.  相似文献   

7.
This paper investigates the problem of chaos and hyper-chaos control, and proposes a simple adaptive feedback control method for chaos control under a reasonable assumption. In comparison with previous methods, the present control technique is simple both in the form of the controller and its application. Several illustrative examples with numerical simulations are studied by using the results obtained in this paper. Study of examples shows that our control method works very well in chaos control.  相似文献   

8.
In this paper, finite-time control problem of a class of nonlinear systems is considered. By using a dynamic gain-based backstepping approach, a state feedback controller involving the dynamic gains is constructed with the help of appropriate Lyapunov function, which guarantees the closed-loop system to be globally finite-time stabilization. A simulation example is provided to illustrate the effectiveness of the proposed control scheme.  相似文献   

9.
In this paper the control of discrete chaotic systems by designing linear feedback controllers is presented. The linear feedback control problem for nonlinear systems has been formulated under the viewpoint of dynamic programming. For suppressing chaos with minimum control effort, the system is stabilized on its first order unstable fixed point (UFP). The presented method also could be employed to make any desired nth order fixed point of the system, stable. Two different methods for higher order UFPs stabilization are suggested. Afterwards, these methods are applied to two well-known chaotic discrete systems: the Logistic and the Henon Maps. For each of them, the first and second UFPs in their chaotic regions are stabilized and simulation results are provided for the demonstration of performance.  相似文献   

10.
This paper studies the synchronization of chaotic systems by the intermittent feedback method which is efficient. A sufficient synchronization criterion for a general intermittent linear state error feedback control is obtained by using a Lyapunov function and differential inequalities. Numerical simulations for the chaotic Chua oscillator are presented to illustrate the theoretical results.  相似文献   

11.
This paper investigates robust finite-time stabilization of a class of uncertain chaotic systems. A new terminal sliding mode (TSM) algorithm is proposed to steer the plant fast to zero within finite time. In particular, a new form of TSM is developed for multi-input and multi-output systems, and some criteria are presented to facilitate its control design. With adaption laws to identify uncertain parameters and unknown bounds on disturbances, the proposed terminal sliding mode controllers get rid of uncertainties and nonlinearities successfully. The closed-loop systems are provided with fast finite-time stability and strong robustness against uncertainties. Finally, numerical simulation of Lorenz system illustrates the effectiveness of this proposed control scheme.  相似文献   

12.
This paper proposes a framework for finite-time synchronization of coupled systems with time delay and stochastic disturbance under feedback control. Combining Kirchhoff"s Matrix Tree Theorem with Lyapunov method as well as stochastic analysis techniques, several sufficient conditions are derived. Differing from previous references, the finite time provided by us is related to topological structure of networks. In addition, two concrete applications about stochastic coupled oscillators with time delay and stochastic Lorenz chaotic coupled systems with time delay are presented, respectively. Besides, two synchronization criteria are provided. Ultimately, two numerical examples are given to illustrate the effectiveness and feasibility of the obtained results.  相似文献   

13.
Observer-based finite-time control of time-delayed jump systems   总被引:1,自引:0,他引:1  
This paper provides the observer-based finite-time control problem of time-delayed Markov jump systems that possess randomly jumping parameters. The transition of the jumping parameters is governed by a finite-state Markov process. The observer-based finite-time H controller via state feedback is proposed to guarantee the stochastic finite-time boundedness and stochastic finite-time stabilization of the resulting closed-loop system for all admissible disturbances and unknown time-delays. Based on stochastic finite-time stability analysis, sufficient conditions that ensure stochastic robust control performance of time-delay jump systems are derived. The control criterion is formulated in the form of linear matrix inequalities and the designed finite-time stabilization controller is described as an optimization one. The presented results are extended to time-varying delayed MJSs. Simulation results illustrate the effectiveness of the developed approaches.  相似文献   

14.
一类二维Markov跳跃非线性时滞系统的镇定控制   总被引:1,自引:0,他引:1  
研究一类二维Markov跳跃非线性时滞系统的镇定控制问题.给出了Markov跳跃非线性时滞系统解的存在唯一性的一个充分条件,以及系统依概率全局渐近稳定的判别准则.通过构造适当形式的Lyapunov函数,采用积分反推方法给出了一类二维Markov跳跃非线性时滞系统的无记忆状态反馈控制器.证明了在该控制律的作用下,闭环系统平衡点依概率全局渐近稳定.  相似文献   

15.
This paper addresses the problem of robust finite-time stabilization of singular stochastic systems via static output feedback. Firstly, sufficient conditions of singular stochastic finite-time boundedness on static output feedback are obtained for the family of singular stochastic systems with parametric uncertainties and time-varying norm-bounded disturbance. Then the results are extended to singular stochastic H finite-time boundedness for the class of singular stochastic systems. Designed algorithm for static output feedback controller is provided to guarantee that the underlying closed-loop singular stochastic system is singular stochastic H finite-time boundedness in terms of strict linear matrix equalities with a fixed parameter. Finally, an illustrative example is presented to show the validity of the developed methodology.  相似文献   

16.
This paper deals with the finite-time chaos synchronization of the unified chaotic system with uncertain parameters. Based on the finite-time stability theory, a control law is proposed to realize finite-time chaos synchronization for the unified chaotic system with uncertain parameters. The controller is simple, robust and only part parameters are required to be bounded. Simulation results for the Lorenz, Lü and Chen chaotic systems are presented to validate the design and the analysis.  相似文献   

17.
研究了一类带有未知外部摄动的四翼混沌主从系统的有限时间同步控制问题.首先,基于自适应模糊控制方法,对四翼混沌系统的不确定项进行了处理.其次,基于Lyapunov有限时间稳定性准则,设计了一种有限时间同步控制器,使得主系统与从系统能在有限时间内实现状态同步.最后,通过数值仿真,检验了该方法的有效性和鲁棒性.  相似文献   

18.
In this paper stabilizing unstable periodic orbits (UPO) in a chaotic fractional order system is studied. Firstly, a technique for finding unstable periodic orbits in chaotic fractional order systems is stated. Then by applying this technique to the fractional van der Pol and fractional Duffing systems as two demonstrative examples, their unstable periodic orbits are found. After that, a method is presented for stabilization of the discovered UPOs based on the theories of stability of linear integer order and fractional order systems. Finally, based on the proposed idea a linear feedback controller is applied to the systems and simulations are done for demonstration of controller performance.  相似文献   

19.
Stabilizing unstable periodic orbits of a deterministic chaotic system which is perturbed by a stochastic process is studied in this paper. The stochastic chaos is modeled by exciting a deterministic chaotic system with a white noise obtained from derivative of a Wiener process which eventually generates an Ito differential equation. It is also assumed that the chaotic system being studied has some model uncertainties which are not random. The sliding mode controller with some modifications is used for stochastic chaos suppression. It is shown that the system states converge to the desired orbit in such a way that the error covariance converges to an arbitrarily small bound around zero. As some case studies, the stabilization of 1-cycle and 2-cycle orbits of chaotic Duffing and Φ6Φ6 Van der Pol systems is investigated by applying the proposed method to their corresponding stochastically perturbed systems. Simulation results show the effectiveness of the method and the accuracy of the statements proved in the paper.  相似文献   

20.
一类非线性微分方程的脉冲镇定   总被引:5,自引:0,他引:5  
针对一般形式的常微分系统提出了脉冲指数镇定的概念,具体研究了一类分离变量型非线性常微分方程的脉冲镇定问题,得到了该方程可脉冲指数镇定的充分判据,全文的概念及结论突出了脉冲在方程稳定性方面的控制效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号