首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper aims to develop a novel numerical approach on the basis of B-spline collocation method to approximate the solution of one-dimensional and two-dimensional nonlinear stochastic quadratic integral equations. The proposed approach is based on the hybrid of collocation method, cubic B-spline, and bi-cubic B-spline interpolation and Itô approximation. Using this method, the problem solving turns into a nonlinear system solution of equations that is solved by a suitable numerical method. Also, the convergence analysis of this numerical approach has been discussed. In the end, examples are given to test the accuracy and the implementation of the method. The results are compared with the results obtained by other methods to verify that this method is accurate and efficient.  相似文献   

2.
In this paper, an efficient and accurate numerical method is presented for solving two types of fractional partial differential equations. The fractional derivative is described in the Caputo sense. Our approach is based on Bernoulli wavelets collocation techniques together with the fractional integral operator, described in the Riemann‐Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations, which greatly simplifies the problem. By using Newton's iterative method, this system is solved and the solution of fractional partial differential equations is achieved. Some results concerning the error analysis are obtained. The validity and applicability of the method are demonstrated by solving four numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions much easier.  相似文献   

3.
In this paper, a finite element collocation approach using cubic B-splines is employed for the numerical solution of a generalized form of the nonlinear Klein-Gordon equation. The efficiency of the method is tested on a number of examples that represent special cases of the extended equation including the sine-Gordon equation. The numerical results are compared with existing numerical and analytic solutions and the outcomes confirm that the scheme yields accurate and reliable results even when few nodes are used at the time levels.  相似文献   

4.
In this paper, we present a numerical scheme for the solution of viscous Cahn–Hilliard equation. The scheme is based on Adomian's decomposition approach and the solutions are calculated in the form of a convergent series with easily computable components. Some numerical examples are presented. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

5.
Based on the Adomian decomposition method, a new analytical and numerical treatment is introduced in this research to investigate linear and non-linear singular two-point BVPs. The effectiveness of the proposed approach is verified by several linear and non-linear examples.  相似文献   

6.
The numerical simulation of the mechanical behavior of industrial materials is widely used for viability verification, improvement and optimization of designs. Elastoplastic models have been used to forecast the mechanical behavior of different materials. The numerical solution of most elastoplastic models comes across problems of ill-condition matrices. A complete representation of the nonlinear behavior of such structures involves the nonlinear equilibrium path of the body and handling of singular (limit) points and/or bifurcation points. Several techniques to solve numerical problems associated to these points have been disposed in the specialized literature. Two examples are the load-controlled Newton–Raphson method and displacement controlled techniques. However, most of these methods fail due to convergence problems (ill-conditioning) in the neighborhood of limit points, specially when the structure presents snap-through or snap-back equilibrium paths. This study presents the main ideas and formalities of the Tikhonov regularization method and shows how this method can be used in the analysis of dynamic elastoplasticity problems. The study presents a rigorous mathematical demonstration of existence and uniqueness of the solution of well-posed dynamic elastoplasticity problems. The numerical solution of dynamic elastoplasticity problems using Tikhonov regularization is presented in this paper. The Galerkin method is used in this formulation. Effectiveness of Tikhonov’s approach in the regularization of the solution of elastoplasticity problems is demonstrated by means of some simple numerical examples.  相似文献   

7.
A numerical differentiation problem for a given function with noisy data is discussed in this paper. A mollification method based on spanned by Hermite functions is proposed and the mollification parameter is chosen by a discrepancy principle. The convergence estimates of the derivatives are obtained. To get a practical approach, we also derive corresponding results for pseudospectral (Hermite-Gauss interpolation) approximations. Numerical examples are given to show the efficiency of the method.  相似文献   

8.
This paper gives a numerical method to simulate sample paths for stochastic differential equations (SDEs) driven by Poisson random measures. It provides us a new approach to simulate systems with jumps from a different angle. The driving Poisson random measures are assumed to be generated by stationary Poisson point processes instead of Lévy processes. Methods provided in this paper can be used to simulate SDEs with Lévy noise approximately. The simulation is divided into two parts: the part of jumping integration is based on definition without approximation while the continuous part is based on some classical approaches. Biological explanations for stochastic integrations with jumps are motivated by several numerical simulations. How to model biological systems with jumps is showed in this paper. Moreover, method of choosing integrands and stationary Poisson point processes in jumping integrations for biological models are obtained. In addition, results are illustrated through some examples and numerical simulations. For some examples, earthquake is chose as a jumping source which causes jumps on the size of biological population.  相似文献   

9.
In this paper a semi-implicit finite volume method is proposed to solve the applications with moving interfaces using the approach of level set methods. The level set advection equation with a given speed in normal direction is solved by this method. Moreover, the scheme is used for the numerical solution of eikonal equation to compute the signed distance function and for the linear advection equation to compute the so-called extension speed [1]. In both equations an extrapolation near the interface is used in our method to treat Dirichlet boundary conditions on implicitly given interfaces. No restrictive CFL stability condition is required by the semi-implicit method that is very convenient especially when using the extrapolation approach. In summary, we can apply the method for the numerical solution of level set advection equation with the initial condition given by the signed distance function and with the advection velocity in normal direction given by the extension speed. Several advantages of the proposed approach can be shown for chosen examples and application. The advected numerical level set function approximates well the property of remaining the signed distance function during whole simulation time. Sufficiently accurate numerical results can be obtained even with the time steps violating the CFL stability condition.  相似文献   

10.
In this paper, a new global optimization approach based on the filled function method is proposed for solving box-constrained systems of nonlinear equations. We first convert the nonlinear system into an equivalent global optimization problem, and then propose a new filled function method to solve the converted global optimization problem. Several numerical examples are presented and solved by using different local minimization methods, which illustrate the efficiency of the present approach.  相似文献   

11.
A standard approach for solving linear partial differential equations is to split the solution into a homogeneous solution and a particular solution. Motivated by the method of fundamental solutions for solving homogeneous equations, we propose a similar approach using the method of approximate particular solutions for solving linear inhomogeneous differential equations without the need of finding the homogeneous solution. This leads to a much simpler numerical scheme with similar accuracy to the traditional approach. To demonstrate the simplicity of the new approach, three numerical examples are given with excellent results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 506–522, 2012  相似文献   

12.
In this paper we propose a numerical scheme based on finite differences for the numerical solution of nonlinear multi-point boundary-value problems over adjacent domains. In each subdomain the solution is governed by a different equation. The solutions are required to be smooth across the interface nodes. The approach is based on using finite difference approximation of the derivatives at the interface nodes. Smoothness across the interface nodes is imposed to produce an algebraic system of nonlinear equations. A modified multi-dimensional Newton’s method is proposed for solving the nonlinear system. The accuracy of the proposed scheme is validated by examples whose exact solutions are known. The proposed scheme is applied to solve for the velocity profile of fluid flow through multilayer porous media.  相似文献   

13.
This paper develops a mathematical model for project time compression problems in CPM/PERT type networks. It is noted this formulation of the problem will be an adequate approximation for solving the time compression problem with any continuous and non-increasing time-cost curve. The kind of this model is Mixed Integer Linear Program (MILP) with zero-one variables, and the Benders' decomposition procedure for analyzing this model has been developed. Then this paper proposes a new approach based on the surrogating method for solving these problems. In addition, the required computer programs have been prepared by the author to execute the algorithm. An illustrative example solved by the new algorithm, and two methods are compared by several numerical examples. Computational experience with these data shows the superiority of the new approach.  相似文献   

14.
In this paper, ruin problems in the risk model with stochastic premium incomes and stochastic return on investments are studied. The logarithm of the asset price process is assumed to be a Lévy process. An exact expression for expected discounted penalty function is established. Lower bounds and two kinds of upper bounds for expected discounted penalty function are obtained by inductive method and martingale approach. Integro-differential equations for the expected discounted penalty function are obtained when the Lévy process is a Brownian motion with positive drift and a compound Poisson process, respectively. Some analytical examples and numerical examples are given to illustrate the upper bounds and the applications of the integro-differential equations in this paper.   相似文献   

15.
This paper deals with the efficient numerical solution of the two-dimensional one-way Helmholtz equation posed on an unbounded domain. In this case, one has to introduce artificial boundary conditions to confine the computational domain. The main topic of this work is the construction of the so-called discrete transparent boundary conditions for state-of-the-art parabolic equation methods, namely a split-step discretization of the high-order parabolic approximation and the split-step Padé algorithm of Collins. Finally, several numerical examples arising in optics and underwater acoustics illustrate the efficiency and accuracy of our approach.  相似文献   

16.
Using an equivalent expression for solutions of second order Dirichlet problems in terms of Ito type stochastic differential equations, we develop a numerical solution method for Dirichlet boundary value problems. It is possible with this idea to solve for solution values of a partial differential equation at isolated points without having to construct any kind of mesh and without knowing approximations for the solution at any other points. Our method is similar to a recently published approach, but differs primarily in the handling of the boundary. Some numerical examples are presented, applying these techniques to model Laplace and Poisson equations on the unit disk. Visiting Professor, Universidad de Salamanca.  相似文献   

17.
吴正朋  余德浩 《计算数学》2004,26(2):237-246
In this paper, we combine a finite element approach with the natural boundary element method to stduy the weak solvability and Galerkin approximations of a class of semilinear exterior boundary value problems. Our analysis is mainly based on the variational formulation with constraints. We discuss the error estimate of the finite element solution and obtain the asymptotic rate of convergence O(h^n) Finally, we also give two numerical examples.  相似文献   

18.
In this article, a numerical scheme on the basis of the measure theoretical approach for extracting approximate solutions of optimal control problems governed by nonlinear Fredholm integral equations is presented. The problem is converted to a linear programming in which its solution leads to construction of approximate solutions of the original problem. Finally, some numerical examples are given to demonstrate the efficiency of the approach.  相似文献   

19.
多变量、多约束连续或离散的非线性规划的一个通用算法   总被引:4,自引:0,他引:4  
利用目标函数对约束函数关于设计变量的一阶微分或差分之比,给出了一个求解非线性规划的通用算法.不论变量和约束有多少,也不论变量是连续的还是离散的,这一算法都比较有效,尤其对离散非线性规划更有效.该方法是一种搜索法,勿需解任何数学方程,只需要计算函数值以及函数对变量的偏微分或差分值.许多数值例题和运筹学中一些经典问题,如1) 一、二维的背包问题;2) 一、二维资源分配问题;3) 复合系统工作可靠性问题;4) 机器负荷问题等,经用此法求解验证均较传统方法更有效和可靠.该方法的主要优点是:1) 不受问题的规模限制;2) 只要在可行域(集)内存在目标函数和约束函数及其一阶导数或差分的值,肯定可以搜索到最优的解,没有不收敛和不稳定的问题.  相似文献   

20.
In this paper, a novel approach, namely, the linearization‐based approach of homotopy analysis method, to analytically treat non‐linear time‐fractional PDEs is proposed. The presented approach suggests a new optimized structure of the homotopy series solution based on a linear approximation of the non‐linear problem. A comparative study between the proposed approach and standard homotopy analysis approach is illustrated by solving two examples involving non‐linear time‐fractional parabolic PDEs. The performed numerical simulations demonstrate that the linearization‐based approach reduces the computational complexity and improves the performance of the homotopy analysis method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号