首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The performance of stir bar sorptive extraction (SBSE) for the enrichment of pesticides from vegetables, fruits and baby food samples is discussed. After extraction with methanol, an aliquot is diluted with water and SBSE is performed for 60 min. By applying a new thermal desorption unit (TDU), fully automated and unattended desorption of 98 stir bars is feasible, making SBSE very cost-effective. The presence of pesticide residues is elucidated with the retention time locked gas chromatography–mass spectroscopy method (RTL-capillary GC–MS). With SBSE–RTL-capillary GC–MS operated in the scan mode, more than 300 pesticides can be monitored in vegetables, fruits and baby food. The multi-residue method (MRM) described provides detectabilities from the mg/kg (ppm) to the sub-μg/kg (ppb) level, thereby complying with the maximum residue levels (MRLs) set by regulatory organizations for pesticides in different matrices. Several examples, i.e. pesticide residues in lettuce, pears, grapes and baby food, illustrate the potential of SBSE–RTL-capillary GC–MS.  相似文献   

2.
The use of pesticides leads to an increase in agricultural production but also causes harmful effects on human health when excessively used. For safe consumption, pesticide residues should be below the maximum residual limits (MRLs). In this study, the residual levels of pesticides in vegetables and fruits collected from farmers’ markets in Sharkia Governorate, Egypt were investigated using LC-MS/MS and GC-MS/MS. A total number of 40 pesticides were detected in the tested vegetable and fruit samples. Insecticides were the highest group in detection frequency with 85% and 69% appearance in vegetables and fruits, respectively. Cucumber and apple samples were found to have the highest number of pesticide residues. The mean residue levels ranged from 7 to 951 µg kg−1 (in vegetable samples) and from 8 to 775 µg kg−1 (in fruit samples). It was found that 35 (40.7%) out of 86 pesticide residues detected in vegetables and 35 (38.9%) out of 90 pesticide residues detected in fruits exceeded MRLs. Results for lambda-cyhalothrin, fipronil, dimothoate, and omethoate in spinach, zucchini, kaki, and strawberry, respectively, can cause acute or chronic risks when consumed at 0.1 and 0.2 kg day−1. Therefore, it is necessary for food safety and security to continuously monitor pesticide residues in fruits and vegetables in markets.  相似文献   

3.
A supramolecular solvent consisting of vesicles, made up of equimolecular amounts of decanoic acid (DeA) and tetrabutylammonium decanoate (Bu4NDe), dispersed in a continuous aqueous phase, is proposed for the extraction of benzimidazolic fungicides (BFs) from fruits and vegetables. Carbendazim (CB), thiabendazole (TB) and fuberidazole (FB) were extracted in a single step and no clean-up or concentration of extracts was needed. The high extraction efficiency obtained for BFs was a result of the different types of interactions provided by the supramolecular solvent (e.g. hydrophobic and hydrogen bonds) and the high number of solubilisation sites it contains. Besides simple and efficient, the proposed extraction approach was rapid, low-cost, environment friendly and it was implemented using conventional lab equipments. The target analytes were determined in the supramolecular extract by LC/fluorescence detection. They were separated in a Kromasil C18 (5 μm, 150 mm × 4.6 mm) column using isocratic elution [mobile phase: 60:40 (v/v) 50 mM phosphate buffer (pH 4)/methanol] and quantified at 286/320 nm (CB) and 300/350 nm (TB and FB) excitation/emission wavelengths, respectively. Quantitation limits provided by the supramolecular solvent-based microextraction (SUSME)/LC/fluorescence detection proposed method for the determination of CB, TB and FB in fruits and vegetables were 14.0, 1.3 and 0.03 μg kg−1, respectively, values far below the current maximum residue levels (MRLs) established by the European Union, i.e. 100-2000 μg kg−1 for CB, 50-5000 μg kg−1 for TB and 50 μg kg−1 for FB. The precision of the method, expressed as relative standard deviation, for inter-day measurements (n = 13) was 3.3% for CB (50 μg kg−1), 3.5% for TB (10 μg kg−1) and 2.8% for FB (0.5 μg kg−1) and recoveries for fruits (oranges, tangerines, lemons, limes, grapefruits, apples, pears and bananas) and vegetables (potatoes and lettuces) fortified at the μg kg−1 level were in the interval 93-102%.  相似文献   

4.
Pesticide residues on fruits and vegetables from Ontario, Canada, 1991-1995   总被引:3,自引:0,他引:3  
For the 5-year period 1991 to 1995, 1536 vegetable and 802 fruit samples were analyzed. The purpose of this study was to determine if pesticides were present on Ontario-produced fruits and vegetables, and if so, to determine if residues violated maximum residue limits (MRLs). Overall, 31.5% of the samples had no detectable pesticide residues, whereas 68.5% contained one or more residues. Most of the residues were present at very low concentrations; 48% of the detections were < 0.1 parts per million (ppm), and 86% were < 1 ppm. However, violations of MRL were observed in only 3.2% of the vegetables samples and 3.1% of the fruit samples. In addition, 4.8% of the samples contained a "technical" violation, that is, there was no specified MRL for the pesticide-commodity combination and the residues exceeded 0.1 ppm. Of the detectable residues, 63% were < 10% of the MRL, whereas 89% were < 50% of the MRL. More fruit samples (91.4%) had a detectable residue, compared with vegetable samples (56.6%). Fruit is often treated close to harvest or post harvest to ensure that wholesome produce reaches the consumer. Forty-six percent of the samples contained 2 or more residues, and 2% of all samples had more than 5 different pesticides detected; fruit samples tended to have more multiple residues. The most frequently found pesticides were captan, the dithiocarbamate fungicides, endosulfan, azinphos-methyl, phosmet, parathion, and iprodione. These pesticides were also used in the greatest quantity for crop production. Overall, the data agree fairly closely with those reported for the U.S. Department of Agriculture Pesticide Data Program because the 2 programs have similar analytical goals and objectives.  相似文献   

5.
Sensitive, simple and rapid ELISA methods have been developed for the determination of four organophosphorus pesticides in extra virgin olive oil. The analytical procedure involves simultaneous extraction of the analytes from oil matrix with methanol and a freezing clean-up step (−80 °C), followed by immunoassay determination using standards in matrix. The methodology is specific for diazinon, fenthion, malathion and chlorpyrifos showing little or no cross-reactivity against other organophosphorus compounds. Limits of detection for the pesticides in olive oil are from 46 ng ml−1 for diazinon to 10 ng ml−1 for fenthion, all of them under the established MRLs for olives. The excellent recoveries (between 94 and 122%) obtained by the complete analytical protocol confirm the potential of this approach for detecting these compounds in olive oil, being useful as screening and complementary method in pesticide regulatory and food safety programs. The proposed methodology also correlates well with the reference chromatographic (GC-MS) methods.  相似文献   

6.
《Analytical letters》2012,45(6):1021-1035
A SPME-GC-MS/MS method for the determination of eight organophosphorus pesticides (azinphos-methyl, chlorpyriphos, chlorpyriphos-methyl, diazinon, fenitrothion, fenthion, malathion, and methidathion) in still and fortified wine was developed. The extraction procedure is simple, solvent free, and without any sample pretreatment. Limits of detection (LOD) and quantitation (LOQ) values in the range 0.1–14.3 µg/L and 0.2–43.3 µg/L, respectively, were obtained. The LOQ values are below the maximum residue levels (MRLs) established by European Regulation for grapes, with the exception of methidathion. Coefficients of correlation (R2) higher than 0.99 were obtained for the majority of the pesticides, in all different wines analyzed.  相似文献   

7.
Degradation of malathion and lindane pesticides present in an aqueous solution was investigated on a laboratory scale upon gamma-irradiation from a 60Co source. The effects of pesticide group, presence of various additives and absorbed dose on efficiency of pesticide degradation were investigated. Gamma-irradiation was carried out in distilled water solutions (malathion and lindane) and in combination with humic solution (HS), nitrous oxide (N2O) and HS/N2O (lindane) over the range 0.1–2 kGy (malathion) and 5–30 kGy (lindane). Malathion was easily degraded at low absorbed doses compared to lindane in distilled water solutions. Absorbed doses required to remove 50% and 90% of initial malathion and lindane concentrations in distilled water solutions were 0.53 and 1.77 kGy (malathion) and 17.97 and 28.79 kGy (lindane), respectively. The presence of HS, N2O and HS/N2O additives in aqueous solutions, significantly improved the effectiveness of radiolytic degradation of lindane. Chemical analysis of the pesticides and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated with mass spectrometry (GC–MS). Additionally, the final degradation products of irradiation as detected by ion chromatography (IC) were acetic acid and traces of some anions (phosphate and chloride).  相似文献   

8.
In this study,an effort has been made to evaluate the pesticide residues in vegetables from western China. Fifty‐one pesticides, including organophosphorus, organochlorine, carbamate and pyrethroid, were detected in 369 commonly used vegetables by GC‐MS. Concentrations of organophosphorus pesticides were detected ranging from 0.0008 to 18.8200 mg/kg, among which organophosphorus pesticide concentrations exceeded their maximum residue levels (MRLs) in five samples. Carbamate and organochlorine pesticides were determined to have concentrations in the range of 0.0012–0.7928 mg/kg. The residual concentrations of carbamate pesticides in six samples and organochlorine pesticides in four samples exceeded their MRLs. The residual concentrations of five pyrethroid pesticides were within the range of 0.0016–6.0827 mg/kg and the pyrethroid residues in two samples exceeded their MRLs. The results revealed that pesticide residues in 70.73% of the vegetables samples were not detected, while in the rest of vegetables there were one or more pesticide residues and some even exceeded their MRLs, which would threaten the health of consumers. Our work provides significant information for the food safety regulations to control the excessive use of some pesticides on those kinds of vegetables from western China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We developed a new analysis method for the nine N-methyl carbamate pesticides in fruits and vegetables using ESI LC/MS/MS with direct sample injection into a short column. After extraction of the pesticides with ethyl acetate from sample, the extract is evaporated to dryness and redissolved in ultra pure water before injection into LC/MS/MS. The method needs no cleanup steps. The average recoveries from fruits and vegetables fortified at the level of 0.01 μg/g ranged from 56.0 to 119.1% with the coefficients of variation ranging from 0.2 to 7.6% for intra-day (n = 5 × 3 days) and from 0.8 to 18.4% for inter-day (n = 15). At the fortified level of 0.5 μg/g, the recoveries ranged from 67.7 to 119.3% with the coefficients of variation ranging from 0.5 to 7.8% for intra-day (n = 5 × 3 days) and from 0.9 to 14.8% for inter-day (n = 15). The method is considered to be satisfactory for the monitoring of the carbamate pesticide residues in fruits and vegetables, suggesting that the present method is applicable to other pesticide residues in foods.  相似文献   

10.
Double stranded calf thymus deoxyribonucleic acid entrapped polypyrrole-polyvinyl sulphonate (dsCT-DNA-PPy-PVS) films fabricated onto indium-tin-oxide (ITO) coated glass plates have been used to detect organophosphates such as chlorpyrifos and malathion. These disposable dsCT-DNA-PPy-PVS/ITO bioelectrodes have been characterized using cyclic voltammetry, Fourier-transform-infra-red (FTIR) spectroscopy and atomic force microscopy (AFM), respectively. These biosensing electrodes have a response time of 30 s, are stable for about 5 months when stored in desiccated conditions at 25 °C and can be used to amperometrically detect chlorpyrifos (0.0016-0.025 ppm) and malathion (0.17-5.0), respectively. The additive effect of these pesticides on the amperometric response of the disposable dsCT-DNA-PPy-PVS/ITO bioelectrodes has also been investigated.  相似文献   

11.
A rapid, specific and sensitive multiresidue method to determine 42 pesticides in made tea, tea infusion and spent leaves has been developed and validated for the routine analysis by liquid chromatography–tandem mass spectrometry (LC–MS/MS). The method was reproducible (Horwitz ratio (HorRat) <0.5 at 50 ng/g) and validated by the analysis of sample spiked at 50 and 100 ng/g in made tea, tea infusion and spent leaves. The samples were extracted with ethyl acetate + cyclohexane (9:1; v/v), and the extracts were cleaned up by dispersive solid phase extraction with primary secondary amine sorbent + graphitized carbon black + Florisil. The recoveries of all the pesticides were between 70% and 120% with a relative standard deviation of less than 15% and correlation coefficient for each pesticide was R2 ≥0.99. The matrix effect on signal of respective compounds was measured by comparing matrix-matched calibration standards with those in solvent-only. The limits of quantitation (LOQ) met the requirements of the maximum residue limits (MRLs) for pesticides in tea as recommended by the European Union.  相似文献   

12.
The effect of gamma irradiation (0.5, 1, 2, and 4 kGy) on the quality of vacuum-packaged dry fermented sausages during refrigerated storage was evaluated. At Day 0 of irradiation, the pH, redness (CIE a?), yellowness (CIE b?), 2-thiobarbituric acid-reactive substances (TBARS) and volatile basic nitrogen (VBN) values of samples irradiated at 2 and 4 kGy were higher (p<0.05), but the CIE L? values (lightness) were lower than those of the non-irradiated control (p<0.05). At<1 kGy irradiation, however, the pH, CIE L?, CIE a? and CIE b?-value of samples were not significantly influenced by irradiation. The CIE a?, and CIE b?-values of samples irradiated at 2 and 4 kGy decreased with the increase of storage time. The VBN, TBARS, and CIE L?-values of samples irradiated at 4 kGy were not changed significantly during refrigerated storage for 90 days (p>0.05). The total plate counts (TPC) and lactic acid bacteria (LAB) in the samples irradiated at 4 kGy were significantly lower (p<0.01) than those with lower irradiation doses. At the end of storage, the TPC, coliform, and LAB in the samples were not increased after irradiation at 1, 0.5 and 1 kGy, respectively. TPC and LAB were not detected in samples irradiated at 4 kGy at Day 90. In addition, no coliform bacteria were found in samples irradiated at 1 kGy during refrigerated storage. Sensory evaluation indicated that the rancid flavor of samples irradiated at 4 kGy was significantly higher, but aroma and taste scores were lower than those of the control at Day 3 of storage. Irradiation of dry fermented sausages at 2 kGy was the best conditions to prolong the shelf-life and decrease the rancid flavor without significant quality deterioration.  相似文献   

13.
Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid–liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72–100% for table grapes and 66–105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64–75% and 58–66%, respectively). Limits of detection (LODs) were in the range 0.651–5.44 μg/kg for table grapes and 0.902–6.33 μg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).  相似文献   

14.
建立了水果和蔬菜中三环锡、三苯锡和苯丁锡同时检测的格氏试剂衍生-气相色谱-串联质谱方法(GC-MS/MS)。样品经盐酸/四氢呋喃(1:10,v/v)消解,正己烷振荡提取,乙基溴化镁衍生和Florisil固相萃取净化,采用GC-MS/MS多反应监测(MRM)模式对3种有机锡化合物进行定性和定量分析。实验结果表明,以苹果为代表性样品基质,三环锡、三苯锡和苯丁锡的检出限(LOD)分别为2.0、1.5和3.4 μg/kg (以Sn计),在10、20、50、200 μg/kg (以Sn计)共4个添加水平下的平均回收率为72.4%~107.1%,相对标准偏差为0.4%~14.2%。该方法灵敏度高,选择性强,可以实现3种有机锡农药的同时检测,能够满足国内外残留限量的检测要求。  相似文献   

15.
A sensitive and effective method for the simultaneous quantitative determination of aminopyralid, clopyralid, and picloram in vegetables (eggplant, cucumber, and tomato) and fruits (apple and grape) was developed and validated using ultra-performance LC coupled with MS/MS. The three herbicides were successfully separated and independently confirmed in a single run. Different extraction and cleanup methods were used to optimize the pretreatment processes of the residue analysis method. The final method is straightforward and involves extraction with 1% formic acid-acetonitrile, and no complicated cleanup process is needed. Determination of the compounds was achieved within 3.0 min. Respective average recoveries using this method at four concentration levels (0.05, 0.1, 0.5, and 1.0 mg/kg) ranged from 66.5 to 109.4%, with RSDs in the range of 1.1-19.7% (n = 5) for all analytes. The LODs were below 0.010 mg/kg, and the LOQs did not exceed 0.036 mg/kg, which were lower than the maximum residue limits (MRLs) of 0.5-5.0 mg/kg clopyralid in vegetables and fruits samples, as established by the European Union. This study provides a theoretical basis for China to develop MRLs and an analytical method for aminopyralid, clopyralid, and picloram in vegetables and fruits.  相似文献   

16.
Giordano A  Richter P  Ahumada I 《Talanta》2011,85(5):2425-2429
The rotating disk sorptive extraction (RDSE) technique was applied to the determination of pesticides in aqueous samples. Pesticides of different polarities were considered in this study: chlorpyrifos, diazinon, fenvalarate, cyhalothrin, cypermethrin, lindane and malathion. The sorptive/desorptive behavior of the pesticides was studied using a rotating disk containing a polydimethylsiloxane (PDMS) phase on one of its surfaces. The analyte polarity was a significant factor in the extraction time; shorter extraction times were required for the more apolar pesticides. The optimum variables for the extraction of all analytes were: extraction time of 3 h, sample volume of 25 mL, rotational velocity of the disk 1250 rpm, desorption time of 30 min using methanol. For pesticides with values of Log Kow > 4, the extraction time can be reduced to 30 min for a quantitative extraction. Under these conditions, recoveries between 76% and 101% were obtained for the target pesticides, and the repeatability of the methodology, expressed as relative standard deviation, was determined to be between 10% and 20%. Additionally, the limits of detection of the analytes were lower than 3.1 μg L−1. The extraction method developed using the RDSE was compared to a stir bar sorptive extraction (SBSE) under the same conditions. It can be observed that the extraction using the rotating disk offers higher recoveries because of its higher PDMS volume and its higher surface area to volume ratio that allows for improved mass transfer.  相似文献   

17.
In this work, a simple and low-cost method based on matrix solid-phase dispersion (MSPD) and gas chromatography to determine eight multi-class pesticides such as vinclozolin, dichlofluanid, penconazol, captan, quinoxyfen, fluquinconazol, boscalid, and pyraclostrobin in grapes is described. Fungicide residues were identified and quantified using gas chromatography–mass spectrometry in selected ion monitoring mode (GC-MS, SIM). The experimental variables that affect the MSPD method, such as the amount of solid phase, solvent nature and elution volume were optimized using an experimental design. The best results were obtained using 0.5 g of grapes, 1.0 g of silica as clean-up sorbent, 1.50 g of C18 as bonded phase and 10 mL of dichloromethane/ethyl acetate (1:1, v/v) as eluting solvent. Significant matrix effects observed for most of the pesticides tested were eliminated using matrix-matched standards. The pesticide recoveries in grapes samples were better than 80% except for captan. Intra-laboratory precision in terms of Horwitz ratio of the pesticides evaluated was below 0.5, suggesting ruggedness of the method. The quantification limits of the pesticides were in the range of 3.4–8.7 μg kg−1, which were lower than the maximum residue limits (MRLs) of the pesticides in grapes samples established by the European legislation. Decision limits (CCα) and detection capability (CCβ) have been calculated. The expanded uncertainties at two levels of concentration were <20% for all analytes.  相似文献   

18.
Rice consumption has increased worldwide over recent decades, as it has become one of the most common foods. Although the analysis of environmental samples coming from rice areas has been well documented, there is less information regarding the analysis of pesticide residues in rice-grain samples.Rice (paddy, brown and white) can be considered a complex matrix, leading to difficulties in the application of the different multiresidue methods described in the literature. This review addresses and compares the principal extraction and clean-up methodologies [e.g., liquid-liquid extraction, solid-phase extraction, pressurized-liquid extraction, QuEChERS (quick, easy, cheap, effective, rugged and safe), gel-permeation chromatography and supercritical-fluid extraction - with QuEChERS-based methods being the most frequently employed].Traditionally, the determination of pesticide residues in rice has been based on gas chromatography with mass spectrometry (MS). But the application of new classes of pesticides has driven laboratories to increase the use of liquid chromatography with tandem MS. The limits of detection and quantification are in the ranges 0.09-90 μg/kg and 1-297 μg/kg, respectively, for the methodologies reported. These values agree with the current internationally-accepted maximum residue limits (MRLs).Based on the European Union (EU) database, more than 3000 analyses of pesticide residues in rice have been performed by official EU laboratories over the past decade. Of these, 6% reported pesticide residues above the MRLs.Physico-chemical properties can explain the occurrence of pesticides in rice commodities: lipophilic pesticides are frequently found in brown rice, whereas fungicides are mainly found in milled rice. Carbendazim, malathion, iprodione, tebuconazole, quinclorac and tricyclazole are the pesticides most frequently found in white rice, while buprofezin, hexaconazole, chlorpyrifos and edifenphos are most commonly found in paddy rice.Pesticide-residue concentrations can be affected during rice processing - with concentrations generally lower in the final products. However, few studies focusing on primary processing have addressed the setting of precise values applicable for the processing factors.  相似文献   

19.
ABSTRACT

This study was conducted to investigate the residues of pyrethroid and organophosphorus pesticide in flour and breads which were collected from local markets in Kermanshah province, Iran. Four different types of breads and two types of flour samples with high distribution were taken from market and their residues of pesticides were measured. A simple dispersive liquid–liquid microextraction (DLLME) method with solidification of floating organic drop was developed for the measurement. The health risk of these pesticides on adults and children health was assessed by target hazard quotient (THQ) using Monte Carlo simulation (MCS) method. About, 15% and 11.1% of total samples contained detectable levels of deltamethrin and malathion, respectively. None of the tested samples showed any permethrin residue. The results from all samples showed that none of the pesticides exceeded the maximum residue limits (MRLs). About 85% of pesticide residue detections were observed in tropical and mild weather area which is due to high consumption rate of insecticides in these areas. The percentile 95% of THQ is due to bread ingestion content of deltamethrin which was 0.033 and 0.070 for the adults and children, respectively, while this value for malathion was found to be, 0.015 and 0.030, respectively. In the adults and children for both deltamethrin and malathion, the percentile 95% of THQ value were lower than 1 (acceptable level). The non-carcinogenic health risk assessment indicated that bread consumers in Kermanshah province are not at a considerable risk because of deltamethrin and malathion.  相似文献   

20.
The feasibility of gas chromatography-negative chemical ionization-triple quadrupole tandem mass spectrometry (GC-NCI-MS-MS), as a routine multiresidue method for simultaneous analysis of 82 pesticides in fruits and vegetables, was investigated. The precursor ions, product ions and collision energy were selected using experiments, and 164 different multiple reaction monitoring (MRM) transitions were monitored simultaneously in one run. Prior to GC-NCI-MS-MS analysis, co-extractives were removed from the concentrated acetonitrile extracts by using dispersive solid phase extraction with octadecyl (350 mg) and primary secondary amine (100 mg) sorbents. Large volume injection (10 µL) combined with a temperature-programmed vaporizer (PTV) system of gas chromatography was used to improve the sensitivity of analytes. To evaluate performance of this method, validation experiments were carried out on cabbage and apples at two spiking levels (10 and 20 ??g kg?1). The average recoveries ranged between 58.7 and 124.4% with intra-day relative standard deviations (RSD) between 3.9 and 15.9%. The limits of detection (LOD), limits of confirmation (LOC) and limits of quantification (LOQ) of all pesticides were below its maximum residue levels (MRLs). The proposed method was successfully applied in the analysis of fruits and vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号