首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.  相似文献   

2.
In this paper, an adaptive sliding mode controller for a novel class of fractional-order chaotic systems with uncertainty and external disturbance is proposed to realize chaos control. The bounds of the uncertainty and external disturbance are assumed to be unknown. Appropriate adaptive laws are designed to tackle the uncertainty and external disturbance. In the adaptive sliding mode control (ASMC) strategy, fractional-order derivative is introduced to obtain a novel sliding surface. The adaptive sliding mode controller is shown to guarantee asymptotical stability of the considered fractional-order chaotic systems in the presence of uncertainty and external disturbance. Some numerical simulations demonstrate the effectiveness of the proposed ASMC scheme.  相似文献   

3.
In this paper, an adaptive controller is designed to ensure robust synchronization of two different chaotic systems with input nonlinearities. For this purpose, a stable sliding surface is defined and an adaptive sliding mode controller is designed to achieve robust synchronization of the systems when the control input is influenced through nonlinearities produced by actuator or external uncertainty recourses. The adaptation law guarantees the synchronization assuming of unknown model uncertainty. Furthermore by adding an integrator and incorporating a saturation function in the control law, the chattering phenomenon caused by the sign function is avoided. The simulation results for synchronization of Chua’s circuit and Genesio systems show the efficiency of the proposed technique.  相似文献   

4.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

5.
This paper presents a robust algorithm to control the chaotic atomic force microscope system (AFMs) by backstepping design procedure. The proposed feedback controller is composed by a sliding mode control (SMC) and a backstepping feedback, so its implementation is quite simple and can be made on the basis of the measured signal. The developed control scheme allows chaos suppression despite uncertainties in the model as well as system external disturbances. The concept of extended system is used such that a continuous sliding mode control effort is generated using backstepping scheme. It is guaranteed that under the proposed control law, uncertain AFMs can asymptotically track target orbits. The converging speed of error states can be arbitrary turned by assigning the corresponding dynamics of the sliding surfaces. Numerical simulations demonstrate its advantages by stabilizing the unstable periodic orbits of the AFMs and this method can also be easily extended to elimination chaotic motion in any types of chaotic AFMs.  相似文献   

6.
This paper proposes a robust adaptive sliding mode control strategy for an introduced class of uncertain chaotic systems. Using the sliding mode control technique and based on Lyapunov stability theory, a time varying sliding surface is determined and an adaptive gain of the robust control law will be tuned to stabilize the new chaotic class. Unlike many well-known methods of the sliding mode control, no knowledge on the bound of uncertainty and disturbance is required. Simulation results are demonstrated for several chaotic examples to illustrate the effectiveness of the proposed adaptive sliding mode control scheme.  相似文献   

7.
To solve disturbances, nonlinearity, nonholonomic constraints and dynamic coupling between the platform and its mounted robot manipulator, an adaptive sliding mode controller based on the backstepping method applied to the robust trajectory tracking of the wheeled mobile manipulator is described in this article. The control algorithm rests on adopting the backstepping method to improve the global ultimate asymptotic stability and applying the sliding mode control to obtain high response and invariability to uncertainties. According to the Lyapunov stability criterion, the wheeled mobile manipulator is divided into several stabilizing subsystems, and an adaptive law is designed to estimate the general nondeterminacy, which make the controller be capable to drive the trajectory tracking error of the mobile manipulator to converge to zero even in the presence of perturbations and mathematical model errors. We compare our controller with the robust neural network based algorithm in nonholonomic constraints and uncertainties, and simulation results prove the effectivity and feasibility of the proposed method in the trajectory tracking of the wheeled mobile manipulator.  相似文献   

8.
This article proposes a novel adaptive sliding mode control (SMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time‐delay systems with input nonlinearity. It is shown that the proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme assures robustness against input nonlinearity, time‐delays, parameter uncertainties, and external disturbances. Moreover, the knowledge of the upper bound of uncertainties is not required and chattering phenomenon is eliminated. Both theoretical analysis and illustrative examples demonstrate the validity of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 66–73, 2015  相似文献   

9.
For the sliding mode controller of uncertain chaotic systems subject to input nonlinearity, the upper bound of the norm of uncertainties is commonly used to determine the controller parameter. However, this will cause serious chattering. In order to overcome this drawback, two new sliding mode controllers are proposed to ensure robust synchronization for a classes of chaotic systems with input nonlinearities and external uncertainty. Compared with the existing results, the proposed controllers can effectively reduce the chattering nearby sliding mode and improve the dynamic performance of the systems. Simulation results are provided to verify the proposed methods.  相似文献   

10.
This paper presents an adaptive neural network (NN) based sliding mode control for unidirectional synchronization of Hindmarsh–Rose (HR) neurons in a master–slave configuration. We first give the dynamics of single HR neuron which may exhibit spike-burst chaotic behaviors. Then we formulate the problem of unidirectional synchronization control of two HR neurons and propose a NN based sliding mode controller. The controller consists of two simple radial basis function (RBF) NNs which are used to approximate the desired sliding mode controller and the uncertain nonlinear part of the error dynamical system, respectively. The control scheme is robust to the uncertainties such as approximate errors, ionic channel noise and external disturbances. The simulation results demonstrate the validity of the proposed control method.  相似文献   

11.
In this paper, a robust intelligent sliding model control (RISMC) scheme using an adaptive recurrent cerebellar model articulation controller (RCMAC) is developed for a class of uncertain nonlinear chaotic systems. This RISMC system offers a design approach to drive the state trajectory to track a desired trajectory, and it is comprised of an adaptive RCMAC and a robust controller. The adaptive RCMAC is used to mimic an ideal sliding mode control (SMC) due to unknown system dynamics, and a robust controller is designed to recover the residual approximation error for guaranteeing the stable characteristic. Moreover, the Taylor linearization technique is employed to derive the linearized model of the RCMAC. The all adaptation laws of the RISMC system are derived based on the Lyapunov stability analysis and projection algorithm, so that the stability of the system can be guaranteed. Finally, the proposed RISMC system is applied to control a Van der Pol oscillator, a Genesio chaotic system and a Chua’s chaotic circuit. The effectiveness of the proposed control scheme is verified by some simulation results with unknown system dynamics and existence of external disturbance. In addition, the advantages of the proposed RISMC are indicated in comparison with a SMC system.  相似文献   

12.
In this paper, a robust adaptive sliding mode controller (RASMC) is introduced to synchronize two different chaotic systems in the presence of unknown bounded uncertainties and external disturbances. The structure of the master and slave chaotic systems has no restrictive assumption. Appropriate adaptation laws are derived to tackle the uncertainties and external disturbances. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding control law is designed to ensure the occurrence of the sliding motion even when both master and slave systems are perturbed with unknown uncertainties and external disturbances. Since the conventional sliding mode controllers contain the sign function, the undesirable chattering is occurred. We propose a new simple adaptive scheme to eliminate the chattering. Finally, numerical simulations are presented to verify the usefulness and applicability of the proposed control strategy.  相似文献   

13.
In this paper, an adaptive neural network (NN) sliding mode controller (SMC) is proposed to realize the chaos synchronization of two gap junction coupled FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. The controller consists of a radial basis function (RBF) NN and an SMC. After the RBFNN approximating the uncertain nonlinear part of the error dynamical system, the SMC realizes the desired control property regardless of the existence of the approximation errors and external disturbances. The weights of the NN are tuned online based on the sliding mode reaching law. According to the Lyapunov stability theory, the stability of the closed error system is guaranteed. The control scheme is robust to the uncertainties such as approximate error, ionic channel noise and external disturbances. Chaos synchronization is obtained by the proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.  相似文献   

14.
This paper considers the robust control problem for a class of uncertain time-varying delayed neural networks, in which the activation function may be a discontinuous function. A robust decentralized adaptive sliding mode controller is proposed to guarantee the asymptotically stability of the system. The proposed controller, which does not dependent on the time delay, ensures the occurrence of the sliding manifold even when the system is undergoing parameter uncertainties and nonlinear input. Two numerical examples are given to show the effectiveness of the proposed controller.  相似文献   

15.
This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.  相似文献   

16.
The paper is concerned with the problem of robust stabilization for uncertain large-scale time-varying delayed systems with input nonlinearities. Based on the sliding mode control, a memoryless decentralized adaptive sliding mode controller (DASMC) is developed. The proposed controller ensures the occurrence of the sliding manifold of the composite system even subjected to input nonlinearity. It shows that the uncertain nonlinear large-scale system also possesses the property of insensitivity to uncertainties and disturbances as a linear system does. A numerical example is given to verify the validity of the developed memoryless DASMC.  相似文献   

17.
对于一类SISO输入时滞已知,状态时滞不确定但有上界的能采用后推设计方法的非线性系统提出一种基于后推设计、自适应模糊控制和滑模控制的控制方案.通过状态变换,把输入时滞系统转化为无输入时滞的系统.用模糊系统来估计系统的未知连续函数,对转化后的新系统设计自适应滑模控制器,使得新系统的状态有界,通过递推证得原系统的状态半全局一致有界.  相似文献   

18.
In this paper, a secure communication scheme based on chaotic modulation is proposed using a reversible process and a robust controller with efficient cost and complexity to synchronize two different chaotic systems. In the controller design, a sliding mode control with an adaptive rule is used for non-linear inputs. The adaptive rule is applied to ensure the synchronization when uncertainties, non-modeled dynamics or external distortions are at work. The message signal is recovered at the receiver using a recursive process at the end. The effectiveness of the proposed algorithm is confirmed via the simulation results for the synchronization of the transmitted signal modulated by Chen chaotic system at the transmitter and Genesio chaotic system at the receiver, and those for the information recovery process.  相似文献   

19.
In this article, an adaptive sliding mode technique based on a fractional‐order (FO) switching type control law is designed to guarantee robust stability for a class of uncertain three‐dimensional FO nonlinear systems with external disturbance. A novel FO switching type control law is proposed to ensure the existence of the sliding motion in finite time. Appropriate adaptive laws are shown to tackle the uncertainty and external disturbance. The calculation formula of the reaching time is analyzed and computed. The reachability analysis is visualized to show how to obtain a shorter reaching time. A stability criteria of the FO sliding mode dynamics is derived based on indirect approach to Lyapunov stability. Effectiveness of the proposed control scheme is illustrated through numerical simulations. © 2015 Wiley Periodicals, Inc. Complexity 21: 363–373, 2016  相似文献   

20.
This article is devoted to the problem of robust stabilization of uncertain nonlinear switched systems with canonical structure. It is assumed that the constant parameters of the subsystems are unknown and cannot be adopted in the controller design. In addition, the dynamics of the subsystems are perturbed via modeling errors and external disturbances. The effects of unknown actuator saturation are compensated via proper adaptive control signals. The derived controller is based on the terminal sliding mode theory and does not need any prior knowledge about the bounds of the lumped uncertain terms. It is proved that once the system states reach the prescribed sliding manifold in a finite time interval, the whole system becomes insensitive to both the lumped uncertainties and the switching dynamics of the system. The common assumption of having known quadratic Lyapunov functions for the subsystems is relaxed and the derived adaptive approach does not force any limitation on the switching signal of the system. Subsequently, non-conservative conditions are provided to guarantee the global finite time bounded stability of the equilibrium state for the overall uncertain nonlinear switched system under arbitrary switching signals. A numerical computer simulation demonstrates the robust performance of the proposed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号