首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the switching dynamics of linear oscillators with arbitrary discontinuous forcing are investigated through the concept of switching systems, and such switching systems consist of countable prescribed linear oscillators with different external excitations. The traditional treatments are to smoothen the discontinuity at switching points of two subsystems in a switching system, which can provide an approximate solution only. Therefore, an alternative method is presented to obtain an exact solution of the resultant switching linear system. Under periodic piecewise forcing and random forcing, the corresponding exact solutions and stochastic responses of switching linear systems are developed. For any periodic forcing, the periodic responses and stability of the resultant system composed of multiple linear oscillators in different time intervals are presented. In addition, the resultant switching system consisting of two oscillators are discussed, and the corresponding stability analysis is carried out.  相似文献   

2.
In this paper, the finite-time synchronization and identification for the uncertain system parameters and topological structure of complex delayed networks with Markovian jumping parameters and stochastic perturbations is studied. On the strength of finite time stability theorem and appropriate stochastic Lyapunov–Krasovskii functional under the Itô’s formula, some sufficient conditions are obtained to assurance that the complex delayed networks with Markovian switching dynamic behavior can be identified the uncertain parameters and topological structure matrix in finite time under stochastic perturbations. In addition, three numerical simulations of different situation and dimension are presented to illustrate the effectiveness and feasibility of the theoretical results.  相似文献   

3.
Abstract

This article continues stability investigation of systems with fading stochastic perturbations. In recent results for systems with the continuous time, it was shown that if stochastic perturbations fade on the infinity quickly enough then asymptotically stable deterministic system remains to be an asymptotically mean square stable independently of the magnitude of the intensity maximum of these stochastic perturbations. Here similar statements are obtained for systems with the discrete time by the condition that the level of stochastic perturbations is given by a square summable sequence. Besides the unsolved problem is proposed: is it possible to get analogous results with not so quickly fading stochastic perturbations. This problem is an open problem and for systems with the continuous time too.  相似文献   

4.
Korenevskii  D. G. 《Mathematical Notes》2001,70(1-2):192-205
We give spectral and algebraic coefficient criteria (necessary and sufficient conditions) as well as sufficient algebraic coefficient conditions for the Lyapunov asymptotic stability of solutions to systems of linear deterministic or stochastic delay difference equations with continuous time under white noise coefficient perturbations for the case in which all delay ratios are rational. For stochastic systems, mean-square asymptotic stability is studied. The Lyapunov function method is used. Our criteria on algebraic coefficients and our sufficient conditions are stated in terms of matrix Lyapunov equations (for deterministic systems) and matrix Sylvester equations (for stochastic systems).  相似文献   

5.
We discuss the behavior, for large values of time, of two linear stochastic mechanical systems. The systems are similar mathematically in that they contain a white noise in their parameters. The initial data may be random as well but are independent of white noise. The expected energy is calculated in both cases. It is well known that for free nonstochastic mechanical systems with viscous damping, the energy approaches zero as time increases. We check that this behavior takes place for the stochastic systems under consideration in the case when the initial data are random but the parameters are not. When the parameters contain a random noise the expected energy may be infinite, approach zero, remain bounded, or increase with no bound. This regime is similar to but more interesting than the known regime for the solutions of differential equations with time dependent periodic coefficients that describes the behavior of a mechanical system with characteristics that are periodic functions of time. We give necessary and sufficient conditions for stability of both systems in terms of the structure of the set of roots of an auxiliary equation.  相似文献   

6.
In this work, robust stability in distribution of Boolean networks (BNs) is studied under multi-bits probabilistic and markovian function perturbations. Firstly, definition of multi-bits stochastic function perturbations is given and an identification matrix is introduced to present each case. Then, by viewing each case as a switching subsystem, BNs under multi-bits stochastic function perturbations can be equivalently converted into stochastic switching systems. After constructing respective transition probability matrices which can unify multi-bits probabilistic and markovian function perturbations in a consolidated framework, robust stability in distribution can be handled. On such basis, necessary and sufficient conditions for robust stability in distribution of BNs under stochastic function perturbations are given respectively. Finally, two numerical examples are presented to verify the validity of our theoretical results.  相似文献   

7.
In this paper, a graph‐theoretic approach for checking exponential stability of the system described by neutral stochastic coupled oscillators network with time‐varying delayed coupling is obtained. Based on graph theory and Lyapunov stability theory, delay‐dependent criteria are deduced to ensure moment exponential stability and almost sure exponential stability of the addressed system, respectively. These criteria can show how coupling topology, time delays, and stochastic perturbations affect exponential stability of such oscillators network. This method may also be applied to other neutral stochastic coupled systems with time delays. Finally, numerical simulations are presented to show the effectiveness of theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
We establish the relationship (equivalence) between the spectral and algebraic (coefficient) criteria (the latter is represented in terms of the Sylvester matrix algebraic equation) of mean-square asymptotic stability for three classes of systems of linear equations with varying random perturbations of coefficients, namely, the ltô differential stochastic equations, difference stochastic equations with discrete time, and difference stochastic equations with continuous time.  相似文献   

9.
The problem of estimating the parameters of linear difference systems of equations from the observations of the segments of solutions with additive stochastic perturbations is considered. The methods of multivariate orthogonal regression are applied to obtain the estimators. The results of comparative study of the methods are exposed from the standpoint of information on linear constraints in observations. The properties of the estimators in the limit cases of a gross sample are studied. For small perturbations, a scheme for comparison of estimators by linear approximations is proposed.  相似文献   

10.
In this paper, an efficient numerical approach is presented, which allows the analysis of the moment dynamics, stability, and stationary behavior of linear periodic stochastic delay differential equations. The method leads to a high dimensional stochastic mapping with periodic statistical properties, from which the periodic first and second moment mappings are derived. The application of the method is demonstrated first through the analysis of the stochastic delay Mathieu equation. Then a practical case study, where the effect of spindle speed variation on the stability and the resulting surface quality of turning operations is investigated.  相似文献   

11.
研究了一类具有时变区间参数的不确定随机线性系统的均方鲁棒稳定性.利用时变区间矩阵的分解技术、矩阵的Kronecker积的性质和Lyapunov函数法,得到了该系统均方鲁棒稳定的几个充分性条件.通过一个数值例子说明了所得的这些充分性条件的有效性和实用性.  相似文献   

12.
In this paper, the mean-square stability of second-order Runge–Kutta schemes for multi-dimensional linear stochastic differential systems is studied. Motivated by the work of Tocino [Mean-square stability of second-order Runge–Kutta methods for stochastic differential equations, J. Comput. Appl. Math. 175 (2005) 355–367] and Saito and Mitsui [Mean-square stability of numerical schemes for stochastic differential systems, in: International Conference on SCIentific Computation and Differential Equations, July 29–August 3 2001, Vancouver, British Columbia, Canada] we investigate the mean-square stability of second-order Runge–Kutta schemes for multi-dimensional linear stochastic differential systems with one multiplicative noise. Stability criteria are established and numerical examples that confirm the theoretical results are also presented.  相似文献   

13.
Conditions for the convergence of parameter estimates to the true value applicable in continuous time linear stochastic evolution systems are presented. A special case, continuous time linear stochastic systems with delays, is also considered. A persistent excitation property is proved by control theory methods  相似文献   

14.
The problem of the robust stability of large-scale dynamical systems including delayed states and parameter perturbations in interconnections is considered. By using algebraic Riccati equations and some analytical methods, some sufficient conditions on linear decentralized state feedback controllers are derived so that the systems remain stable in the presence of delayed states and parameter perturbations. Such conditions give some bounds on the perturbations of interconnections with delayed states and uncertain parameters, and result in a quantitative measures of robustness for large-scale dynamical systems including delayed states and uncertain parameters in interconnections. The results obtained in this paper are applicable not only to large-scale systems with multiple time-varying delays, but also to large-scale systems without exact knowledge of the delays, i.e., large-scale systems with uncertain delays.  相似文献   

15.
In this paper, the problems of stochastic stability and robust control for a class of uncertain sampled-data systems are studied. The systems consist of random jumping parameters described by finite-state semi-Markov process. Sufficient conditions for stochastic stability or exponential mean square stability of the systems are presented. The conditions for the existence of a sampled-data feedback control and a multirate sampled-data optimal control for the continuous-time uncertain Markovian jump systems are also obtained. The design procedure for robust multirate sampled-data control is formulated as linear matrix inequalities (LMIs), which can be solved efficiently by available software toolboxes. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed techniques.  相似文献   

16.
This paper studies the stochastic stability of positive Markov jump linear systems with a fixed dwell time. By constructing an auxiliary system that originated from the initial system with state jumps, sufficient and necessary conditions of stochastic stability for positive Markov jump linear systems are obtained with both exactly known and partially known transition rates. The main idea in the latter case is applying a convex combination to convert bilinear programming into linear programming problems. On this basis, multiple piecewise linear co-positive Lyapunov functions are provided to achieve less conservative results. Then state feedback controller is designed to stabilize the positive Markov jump linear systems by solving linear programming problems. Numerical examples are presented to illustrate the viability of our conclusions.  相似文献   

17.
This article addresses the problem of delay-dependent stability for Markovian jumping stochastic systems with interval time-varying delays and nonlinear perturbations. The delay is assumed to be time-varying and belongs to a given interval. By resorting to Lyapunov–Krasovskii functionals and stochastic stability theory, a new delay interval-dependent stability criterion for the system is obtained. It is shown that the addressed problem can be solved if a set of linear matrix inequalities (LMIs) are feasible. Finally, a numerical example is employed to illustrate the effectiveness and less conservativeness of the developed techniques.  相似文献   

18.
《随机分析与应用》2013,31(4):935-951
Abstract

In this paper, we investigate the stochastic stabilization problem for a class of linear discrete time‐delay systems with Markovian jump parameters. The jump parameters considered here is modeled by a discrete‐time Markov chain. Our attention is focused on the design of linear state feedback memoryless controller such that stochastic stability of the resulting closed‐loop system is guaranteed when the system under consideration is either with or without parameter uncertainties. Sufficient conditions are proposed to solve the above problems, which are in terms of a set of solutions of coupled matrix inequalities.  相似文献   

19.
In this paper, a periodic budworm population model with impulsive perturbations is investigated. The impulse is realized at fixed moments of time. A good understanding of the existence and global asymptotic stability of positive periodic solutions is gained. It turns out that the impulsive perturbations play an important role and have effects on the above dynamics of the system. Numerical simulations are presented to verify the validity of the proposed criteria. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present a unifying approach to the problems of computing of stability radii of positive linear systems. First, we study stability radii of linear time-invariant parameter-varying differential systems. A formula for the complex stability radius under multi perturbations is given. Then, under hypotheses of positivity of the system matrices, we prove that the complex, real and positive stability radii of the system under multi perturbations (or affine perturbations) coincide and they are computed via simple formulae. As applications, we consider problems of computing of (strong) stability radii of linear time-invariant time-delay differential systems and computing of stability radii of positive linear functional differential equations under multi perturbations and affine perturbations. We show that for a class of positive linear time-delay differential systems, the stability radii of the system under multi perturbations (or affine perturbations) are equal to the strong stability radii. Next, we prove that the stability radii of a positive linear functional differential equation under multi perturbations (or affine perturbations) are equal to those of the associated linear time-invariant parameter-varying differential system. In particular, we get back some explicit formulas for these stability radii which are given recently in [P.H.A. Ngoc, Strong stability radii of positive linear time-delay systems, Internat. J. Robust Nonlinear Control 15 (2005) 459-472; P.H.A. Ngoc, N.K. Son, Stability radii of positive linear functional differential equations under multi perturbations, SIAM J. Control Optim. 43 (2005) 2278-2295]. Finally, we give two examples to illustrate the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号