首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this paper, a virus infection model with standard incidence rate and delayed CTL immune response is investigated. By analyzing corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the CTL-activated infection equilibrium are established, respectively. By means of comparison arguments, it is verified that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio is less than unity. By using suitable Lyapunov functional and LaSalle's invariance principle, it is shown that the CTL-inactivated infection equilibrium of the system is globally asymptotically stable if tile immune response reproduction ratio is less than unity and the basic reproduction ratio is greater than unity. Numerical simulations are carried out to illustrate the theoretical result.  相似文献   

3.
In this paper, we study a viral infection model with an immunity time delay accounting for the time between the immune system touching antigenic stimulation and generating CTLs. By calculation, we derive two thresholds to determine the global dynamics of the model, i.e., the reproduction number for viral infection $R_{0}$ and for CTL immune response $R_{1}$. By analyzing the characteristic equation, the local stability of each feasible equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the CTL-activated infection equilibrium is also studied. By constructing suitable Lyapunov functionals, we prove that when $R_{0}\leq1$, the infection-free equilibrium is globally asymptotically stable; when $R_{0}>1$ and $R_{1}\leq1$, the CTL-inactivated infection equilibrium is globally asymptotically stable; Numerical simulation is carried out to illustrate the main results in the end.  相似文献   

4.
In this paper, an HIV-1 infection model with a saturation infection rate and an intracellular delay accounting for the time between viral entry into a target cell and the production of new virus particles is investigated. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and the LaSalle invariant principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable; if the basic reproduction ratio is greater than unity, the chronic-infection equilibrium is globally asymptotically stable.  相似文献   

5.
In this paper, the dynamics behavior of a delayed viral infection model with logistic growth and immune impairment is studied. It is shown that there exist three equilibria. By analyzing the characteristic equations, the local stability of the infection-free equilibrium and the immune-exhausted equilibrium of the model are established. By using suitable Lyapunov functional and LaSalle invariant principle, it is proved that the two equilibria are globally asymptotically stable. In the following, the stability of the positive equilibrium is investigated. Furthermore, we investigate the existence of Hopf bifurcation by using a delay as a bifurcation parameter. Finally, numerical simulations are carried out to explain the mathematical conclusions.  相似文献   

6.
考虑到HIV-1感染过程中免疫反应和非线性感染函数,建立了一类具有三个分布时滞的HIV-1感染动力学模型.得到了关于病毒感染的基本再生数R0和CTLs免疫反应的基本再生数R1 <R0.通过构造Lyapunov泛函证明了系统具有阈值动力学性质,即当R0≤1时,系统存在全局渐近稳定的无感染平衡点;当R1≤1<R0时,系统出...  相似文献   

7.
In this paper, we investigate a mathematical model which takes account the cure of infected cells and the loss of viral particles due to the absorption into uninfected cells. The global stability of the model is determined by using the direct Lyapunov method for disease-free equilibrium, and the geometrical approach for chronic infection equilibrium.  相似文献   

8.
In this paper, incorporating the delay of viral cytopathicity within target cells, we first presented a basic model of viral infection with delay, and then extended it into a model with two delays and two types of target cells. For the models proposed here, both their basic reproduction numbers are found. By constructing Lyapunov functionals, necessary and sufficient conditions ensuring the global stability of the models with delays are given. The obtained results show that, when the basic reproduction number is not greater than one, the infection-free equilibrium is globally stable in the feasible region, which implies that the virus infection goes extinct eventually; when it is greater than one, the infection equilibrium is globally stable in the feasible region, which implies that the virus infection persists in the body of host.  相似文献   

9.
In this paper, we propose an improved human T‐cell leukemia virus type 1 infection model with mitotic division of actively infected cells and delayed cytotoxic T lymphocyte immune response. By constructing suitable Lyapunov functional and using LaSalle invariance principle, we investigate the global stability of the infection‐free equilibrium of the system. Our results show that the time delay can change stability behavior of the infection equilibrium and lead to the existence of Hopf bifurcations. Finally, numerical simulations are conducted to illustrate the applications of the main results.  相似文献   

10.
This article proposes a diffused hepatitis B virus (HBV) model with CTL immune response and nonlinear incidence for the control of viral infections. By means of different Lyapunov functions, the global asymptotical properties of the viral-free equilibrium and immune-free equilibrium of the model are obtained. Global stability of the positive equilibrium of the model is also considered. The results show that the free diffusion of the virus has no effect on the global stability of such HBV infection problem with Neumann homogeneous boundary conditions.  相似文献   

11.
Direct cell‐to‐cell transmission of HIV‐1 is a more efficient means of virus infection than virus‐to‐cell transmission. In this paper, we incorporate both these transmissions into an HIV‐1 virus model with nonlinear general incidence rate, intracellular delay, and cytotoxic T lymphocyte (CTL) immune responses. This model admits three types of equilibria: infection‐free equilibrium, CTL‐inactivated equilibrium, and CTL‐activated equilibrium. By using Lyapunov functionals and LaSalle invariance principle, it is verified that global threshold dynamics of the model can be explicitly described by the basic reproduction numbers.  相似文献   

12.
在基本病毒动力学模型的基础上,建立了一个具有HollingⅡ型感染率且带有时滞的HIV模型.通过稳定性分析,讨论了模型无病平衡点以及正平衡点的稳定性态.最后借助Matlab对模型进行了数值模拟.  相似文献   

13.
Human T-cell leukaemia virus type I (HTLV-I) preferentially infects the CD4+ T cells. The HTLV-I infection causes a strong HTLV-I specific immune response from CD8+ cytotoxic T cells (CTLs). The persistent cytotoxicity of the CTL is believed to contribute to the development of a progressive neurologic disease, HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). We investigate the global dynamics of a mathematical model for the CTL response to HTLV-I infection in vivo. To account for a series of immunological events leading to the CTL response, we incorporate a time delay in the response term. Our mathematical analysis establishes that the global dynamics are determined by two threshold parameters R0 and R1, basic reproduction numbers for viral infection and for CTL response, respectively. If R0≤1, the infection-free equilibrium P0 is globally asymptotically stable, and the HTLV-I viruses are cleared. If R1≤1<R0, the asymptomatic-carrier equilibrium P1 is globally asymptotically stable, and the HTLV-I infection becomes chronic but with no persistent CTL response. If R1>1, a unique HAM/TSP equilibrium P2 exists, at which the HTLV-I infection is chronic with a persistent CTL response. We show that the time delay can destabilize the HAM/TSP equilibrium, leading to Hopf bifurcations and stable periodic oscillations. Implications of our results to the pathogenesis of HTLV-I infection and HAM/TSP development are discussed.  相似文献   

14.
An epidemic model on the basis of therapy of chronic Hepatitis B with antivirus treatment was introduced in this paper. By applying a comparison theorem and analyzing the corresponding characteristic equations, we obtain sufficient conditions on the parameters for the global stability of the disease-free state. It's proved that if the basic reproduction number \(R_0 &lt; 1\) , the disease-free equilibrium is globally asymptotically stable. If \(R_0 &gt; 1\), the disease-free equilibrium is unstable and the disease is uniformly permanent. Moreover, if \(R_0 &gt; 1\), sufficient conditions are obtained for the global stability of the endemic equilibrium.  相似文献   

15.
In this paper, an SIR epidemic model with vaccination for both the newborns and susceptibles is investigated, where it is assumed that the vaccinated individuals have the temporary immunity. The basic reproduction number determining the extinction or persistence of the infection is found. By constructing a Lyapunov function, it is proved that the disease free equilibrium is globally stable when the basic reproduction number is less than or equal to one, and that the endemic equilibrium is globally stable wh...  相似文献   

16.
A delayed predator–prey system with Holling type II functional response and stage structure for both the predator and the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each feasible equilibrium of the system is discussed, and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory for infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using suitable Lyapunov functions and the LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator–extinction equilibrium and the coexistence equilibrium do not exist, and that the predator–extinction equilibrium is globally stable when the coexistence equilibrium does not exist. Further, sufficient conditions are obtained for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we investigate the dynamical properties for a model of delay differential equations, which describes a virus‐immune interaction in vivo. By analyzing corresponding characteristic equations, the local stability of the equilibria for infection‐free, antibody‐free, and antibody response and the existence of Hopf bifurcation with antibody response delay as a bifurcation parameter at the antibody‐activated infection equilibrium are established, respectively. Global stability of the equilibria for infection‐free, antibody‐free, and antibody response, respectively, also are established by applying the Lyapunov functionals method. The numerical simulations are performed in order to illustrate the dynamical behavior of the model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the global stability of a virus dynamics model with intracellular delay, Crowley–Martin functional response of the infection rate, and CTL immune response is studied. By constructing suitable Lyapunov functions and using LaSalles invariance principle, the global dynamics is established; it is proved that if the basic reproductive number, R0, is less than or equal to one, the infection‐free equilibrium is globally asymptotically stable; if R0 is more than one, and if immune response reproductive number, R0, is less than one, the immune‐free equilibrium is globally asymptotically stable, and if R0 is more than one, the endemic equilibrium is globally asymptotically stable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A ratio-dependent predator–prey model with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when τ = τ0. By using an iteration technique, sufficient conditions are derived for the global attractivity of the positive equilibrium. By comparison arguments, sufficient conditions are obtained for the global stability of the boundary equilibrium. Numerical simulations are carried out to illustrate the main results.  相似文献   

20.
In this paper, the stability and Hopf bifurcation of a delayed viral infection model with logistic growth and saturated immune impairment is studied. It is shown that there exist 3 equilibria. The sufficient conditions for local asymptotic stability of the infection‐free equilibrium and no‐immune equilibrium are given. We also discussed the local stability of positive equilibrium and the existence of Hopf bifurcation. Moreover, the direction and stability of Hopf bifurcation is obtained by using standard form theory and the center manifold theorem. Finally, numerical simulations are performed to verify the theoretical conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号