首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let F(A) be the numerical range or the numerical radius of a square matrix A. Denote by A ° B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F(A ° B) = F(?(A) ° ?(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices.  相似文献   

2.
3.
The inertia set of a symmetric sign pattern A is the set i(A) = {i(B) | B = B TQ(A)}, where i(B) denotes the inertia of real symmetric matrix B, and Q(A) denotes the sign pattern class of A. In this paper, a complete characterization on the inertia set of the nonnegative symmetric sign pattern A in which each diagonal entry is zero and all off-diagonal entries are positive is obtained. Further, we also consider the bound for the numbers of nonzero entries in the nonnegative symmetric sign patterns A with zero diagonal that require unique inertia.  相似文献   

4.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

5.
两类惯量惟一的对称符号模式   总被引:4,自引:0,他引:4  
§ 1  IntroductionA sign pattern(matrix) A is a matrix whose entries are from the set{ +,-,0 } .De-note the setofall n× n sign patterns by Qn.Associated with each A=(aij)∈ Qnis a class ofreal matrices,called the qualitative class of A,defined byQ(A) ={ B =(bij)∈ Mn(R) |sign(bij) =aijfor all i and j} .   For a symmetric sign pattern A∈ Qn,by G(A) we mean the undirected graph of A,with vertex set { 1 ,...,n} and (i,j) is an edge if and only if aij≠ 0 .A sign pattern A∈ Qnis a do…  相似文献   

6.
Let A1, … , Ak be positive semidefinite matrices and B1, … , Bk arbitrary complex matrices of order n. We show that
span{(A1x)°(A2x)°?°(Akx)|xCn}=range(A1°A2°?°Ak)  相似文献   

7.
Two Hermitian matrices A,BMn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix CMn(C) such that B=CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible inertias of the Hermitian matrices C that carry the congruence. We also give necessary and sufficient conditions for any 2-by-2 nonsingular Hermitian matrices to be Hermitian-congruent. In both of the studied cases, we show that if A and B are real and Hermitian-congruent, then they are congruent by a real symmetric matrix. Finally we note that if A and B are 2-by-2 nonsingular real symmetric matrices having the same sign pattern, then there is always a real symmetric matrix C satisfying B=CAC. Moreover, if both matrices are positive, then C can be picked with arbitrary inertia.  相似文献   

8.
For a nonnegative n × n matrix A, we find that there is a polynomial f(x)∈R[x] such that f(A) is a positive matrix of rank one if and only if A is irreducible. Furthermore, we show that the lowest degree such polynomial f(x) with tr f(A) = n is unique. Thus, generalizing the well-known definition of the Hoffman polynomial of a strongly connected regular digraph, for any irreducible nonnegative n × n matrix A, we are led to define its Hoffman polynomial to be the polynomial f(x) of minimum degree satisfying that f(A) is positive and has rank 1 and trace n. The Hoffman polynomial of a strongly connected digraph is defined to be the Hoffman polynomial of its adjacency matrix. We collect in this paper some basic results and open problems related to the concept of Hoffman polynomials.  相似文献   

9.
Let b = b(A) be the Boolean rank of an n × n primitive Boolean matrix A and exp(A) be the exponent of A. Then exp(A) ? (b − 1)2 + 2, and the matrices for which equality occurs have been determined in [D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101-116]. In this paper, we show that for each 3 ? b ? n − 1, there are n × n primitive Boolean matrices A with b(A) = b such that exp(A) = (b − 1)2 + 1, and we explicitly describe all such matrices.  相似文献   

10.
Let F be a field with ∣F∣ > 2 and Tn(F) be the set of all n × n upper triangular matrices, where n ? 2. Let k ? 2 be a given integer. A k-tuple of matrices A1, …, Ak ∈ Tn(F) is called rank reverse permutable if rank(A1 A2 ? Ak) = rank(Ak Ak−1 ? A1). We characterize the linear maps on Tn(F) that strongly preserve the set of rank reverse permutable matrix k-tuples.  相似文献   

11.
In a recent paper, Neumann and Sze considered for an n × n nonnegative matrix A, the minimization and maximization of ρ(A + S), the spectral radius of (A + S), as S ranges over all the doubly stochastic matrices. They showed that both extremal values are always attained at an n × n permutation matrix. As a permutation matrix is a particular case of a normal matrix whose spectral radius is 1, we consider here, for positive matrices A such that (A + N) is a nonnegative matrix, for all normal matrices N whose spectral radius is 1, the minimization and maximization problems of ρ(A + N) as N ranges over all such matrices. We show that the extremal values always occur at an n × n real unitary matrix. We compare our results with a less recent work of Han, Neumann, and Tastsomeros in which the maximum value of ρ(A + X) over all n × n real matrices X of Frobenius norm was sought.  相似文献   

12.
The period and base of a reducible sign pattern matrix   总被引:1,自引:0,他引:1  
Bolian Liu 《Discrete Mathematics》2007,307(23):3031-3039
A square sign pattern matrix A (whose entries are ) is said to be powerful if all the powers A,A2,A3,…, are unambiguously defined. For a powerful pattern A, if Al=Al+p with l and p minimal, then l is called the base of A and p is called the period of Li et al. [On the period and base of a sign pattern matrix, Linear Algebra Appl. 212/213 (1994) 101-120] characterized irreducible powerful sign pattern matrices. In this paper, we characterize reducible, powerful sign pattern matrices and give some new results on the period and base of a powerful sign pattern matrix.  相似文献   

13.
The matrix A = (aij) ∈ Sn is said to lie on a strict undirected graph G if aij = 0 (i ≠ j) whenever (ij) is not in E(G). If S is skew-symmetric, the isospectral flow maintains the spectrum of A. We consider isospectral flows that maintain a matrix A(t) on a given graph G. We review known results for a graph G that is a (generalised) path, and construct isospectral flows for a (generalised) ring, and a star, and show how a flow may be constructed for a general graph. The analysis may be applied to the isospectral problem for a lumped-mass finite element model of an undamped vibrating system. In that context, it is important that the flow maintain other properties such as irreducibility or positivity, and we discuss whether they are maintained.  相似文献   

14.
For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region, the Brauer region in terms of Cassini ovals, and the Ostrowski region. Characterization is obtained for maps Φ on n×n matrices satisfying S(Φ(A)-Φ(B))=S(A-B) for all matrices A and B. From these results, one can deduce the structure of additive or (real) linear maps satisfying S(A)=S(Φ(A)) for every matrix A.  相似文献   

15.
Spectrally arbitrary ray patterns   总被引:2,自引:0,他引:2  
An n×n ray pattern A is said to be spectrally arbitrary if for every monic nth degree polynomial f(x) with coefficients from C, there is a matrix in the pattern class of A such that its characteristic polynomial is f(x). In this article the authors extend the nilpotent-Jacobi method for sign patterns to ray patterns, establishing a means to show that an irreducible ray pattern and all its superpatterns are spectrally arbitrary. They use this method to establish that a particular family of n×n irreducible ray patterns with exactly 3n nonzeros is spectrally arbitrary. They then show that every n×n irreducible, spectrally arbitrary ray pattern has at least 3n-1 nonzeros.  相似文献   

16.
Let Mn be the space of all n × n complex matrices, and let Γn be the subset of Mn consisting of all n × n k-potent matrices. We denote by Ψn the set of all maps on Mn satisfying A − λB ∈ Γn if and only if ?(A) − λ?(B) ∈ Γn for every A,B ∈ Mn and λ ∈ C. It was shown that ? ∈ Ψn if and only if there exist an invertible matrix P ∈ Mn and c ∈ C with ck−1 = 1 such that either ?(A) = cPAP−1 for every A ∈ Mn, or ?(A) = cPATP−1 for every A ∈ Mn.  相似文献   

17.
For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region, the union of Cassini ovals, and the Ostrowski’s set. Characterization is obtained for maps Φ on n×n matrices satisfying S(Φ(A)Φ(B))=S(AB) for all matrices A and B.  相似文献   

18.
For any n-by-n matrix A  , we consider the maximum number k=k(A)k=k(A) for which there is a k-by-k compression of A   with all its diagonal entries in the boundary ∂W(A)W(A) of the numerical range W(A)W(A) of A. If A   is a normal or a quadratic matrix, then the exact value of k(A)k(A) can be computed. For a matrix A   of the form B⊕CBC, we show that k(A)=2k(A)=2 if and only if the numerical range of one summand, say, B is contained in the interior of the numerical range of the other summand C   and k(C)=2k(C)=2. For an irreducible matrix A  , we can determine exactly when the value of k(A)k(A) equals the size of A  . These are then applied to determine k(A)k(A) for a reducible matrix A   of size 4 in terms of the shape of W(A)W(A).  相似文献   

19.
We present an efficient algorithm for obtaining a canonical system of Jordan chains for an n × n regular analytic matrix function A(λ) that is singular at the origin. For any analytic vector function b(λ), we show that each term in the Laurent expansion of A(λ)−1b(λ) may be obtained from the previous terms by solving an (n + d) × (n+d) linear system, where d is the order of the zero of det A(λ) at λ = 0. The matrix representing this linear system contains A(0) as a principal submatrix, which can be useful if A(0) is sparse. The last several iterations can be eliminated if left Jordan chains are computed in addition to right Jordan chains. The performance of the algorithm in floating point and exact (rational) arithmetic is reported for several test cases. The method is shown to be forward stable in floating point arithmetic.  相似文献   

20.
Let F be a field and let m and n be integers with m,n?3. Let Mn denote the algebra of n×n matrices over F. In this note, we characterize mappings ψ:MnMm that satisfy one of the following conditions:
1.
|F|=2 or |F|>n+1, and ψ(adj(A+αB))=adj(ψ(A)+αψ(B)) for all A,BMn and αF with ψ(In)≠0.
2.
ψ is surjective and ψ(adj(A-B))=adj(ψ(A)-ψ(B)) for every A,BMn.
Here, adjA denotes the classical adjoint of the matrix A, and In is the identity matrix of order n. We give examples showing the indispensability of the assumption ψ(In)≠0 in our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号